K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

\(a;b.B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\sqrt{x}-1\) ( x > 0 ; x # 1 )

\(c.x=3+\sqrt{8}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\left(TM\right)\)

\(\sqrt{x}=\sqrt{2}+1\)

Khi đó : \(B=\sqrt{2}+1-1=\sqrt{2}\)

\(d.B=\dfrac{2}{3}\)\(\sqrt{x}=\dfrac{2}{3}+1\text{⇔}x=\dfrac{25}{9}\left(TM\right)\)

\(e.B>1\text{⇔}\sqrt{x}-1>1\text{⇔}\sqrt{x}>2\text{⇔}x>4\)

31 tháng 7 2018

Tks bn

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4

23 tháng 9 2018

a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)

\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)

\(=\frac{4}{1-\sqrt{x}}\)

c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)

11 tháng 8 2018

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Với  \(x=3\)( thỏa mãn ĐKXĐ ) ta có  \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)

c) A ở đâu ???? '-' 

15 tháng 8 2021

a, Với x > 0 

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)

\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\sqrt{x}+1\)12
\(\sqrt{x}\)0 (loại )1
xloại1

a: ĐKXĐ: x>1

b: \(B=\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}+x=x+2\sqrt{x-1}\)

c: Khi B=4 thì \(\left(\sqrt{x-1}+1\right)^2=4\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

=>x-1=1

=>x=2

1: Khi x=64 thì \(A=\dfrac{8+2}{8}=\dfrac{5}{4}\)

2: \(B=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)

b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)

\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)

25 tháng 6 2016

a)\(\frac{\left(x-1\right)}{\sqrt{x}}\)

b) để P>0\(\Rightarrow\)\(\frac{\left(x-1\right)}{\sqrt{x}}>0\)

do \(\sqrt{x}>0\Rightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c)P=\(\frac{8}{3}\)

25 tháng 6 2016

Giúp mình với