K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Áp dụng định lí Thalès:

• Vì IM // BK nên \(\dfrac{{AI}}{{AB}} = \dfrac{{AM}}{{AK}}\)suy ra AB . AM = AI . AK           (1)

• Vì KN // IC nên \(\dfrac{{AN}}{{AI}} = \dfrac{{AK}}{{AC}}\) suy ra AN . AC = AI . AK            (2)

Từ (1) và (2) suy ra AB . AM = AN . AC = AI . AK        

Do đó \(\dfrac{{AN}}{{AB}} = \dfrac{{AM}}{{AC}}\) (theo tính chất tỉ lệ thức).

Suy ra MN // BC (theo định lí Thalès đảo).

22 tháng 2 2020

+) Xét △ABK có :IM//BK;I∈AB;M∈AK

Theo Đlí ta-lét ,ta có :

\(\frac{AI}{AB}=\frac{AM}{AK}\) (1)

⇒AI.AK=AM.AK

+)Xét ▲AIC có :NK//IC;N∈AI;K∈AC

Theo ĐLí ta-lét ,ta có :

\(\frac{AN}{AI}=\frac{AK}{AC}\) (2)

⇒AN.AC=AK.AI(4)

Từ (3) và (4) ,áp dụng Đlí Ta-lét đảo ,ta có :

=>-\(\frac{AN}{AB}=\frac{AM}{AC}\)

=>MN//BC(đpcm)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Hình vẽ:

Violympic toán 8

11 tháng 12 2021

a: Xét tứ giác MNCP có 

MP//CN

MN//CP

Do đó: MNCP là hình bình hành

a: Xét tứ giác BMNP có

BM//NP

NM//BP

Do đó: BMNP là hình bình hành

Xét ΔABC có

N là trung điểm của CA

NP//AB

Do đó: P là trung điểm của BC

b: Sửa đề; HB//AP

Xét ΔABC có

N là trung điểm của AC

NM//BC

Do đó: M là trung điểm của AB

Xét tứ giác AHBP có

M là trung điểm chung của AB và HP

=>AHBP là hình bình hành

 

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC