K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

18 tháng 3 2018

a.

\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)

\(\Rightarrow6x^5-3x^3+15x^2=6x^5-3x^3+15x^2\)

\(=6x^5-3x^2+15x^2-6x^5-3x^3+15x^2\)

= 0

b.

\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)

\(\Rightarrow4x^3y^2+3x^2y^2-5x^3y=4x^3y^2+3x^2y^2-5x^3y\)

= 0

18 tháng 3 2018

thanks

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)

Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)

Vậy $a=0$

---------------------

$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$

$=-3xy^4+(a+7)x^3y^7-7xy$

Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)

Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)

Vậy $a+7=0\Leftrightarrow a=-7$

19 tháng 7 2017

a)= \(4x^2y+2x^2y-5x^2y-3y^3-5y^3-6xy^2\)

=\(2x^2y-8y^3-6xy\)

b) =\(2xyz-8xyz-11xy^3+2xy^3+4xy-2xy-11\)

=\(-6xyz-9xy^3+2xy-11\)

mình ko viết đề bài đâu leu 2 câu còn lại làm tương tự nhéhaha

19 tháng 7 2017

a. \(4x^2y-3y^3-6xy^2-5y^3+2x^2y-5x^2y\)

\(=-8y^3+x^2y-6xy^2\)

b. \(2xyz-11xy^3-8xyz+2xy^3+4xy-11-2xy\)

\(=-6xyz-9xy^3+2xy-11\)

c. \(x\left(x-5\right)-3x\left(x-1\right)+6\left(x-2\right)\)

\(=x^2-5x-3x^2-3x+6x-12\)

\(=-2x^2-2x-12\)

d. \(x^3\left(x-2\right)-2x^2\left(x^2-x\right)+5\left(2x^4-1\right)\)

\(=x^4-2x^3-2x^4-2x^3+10x^4-5\)

\(=9x^4-4x^3-5\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 5:

a)

\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)

\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)

b)

\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)

\(=9+3-1-27=-18\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 7:

a)

\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=0; x=-2$

b)

\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy đa thức có nghiệm $x=0$

c)

\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)

Do đó đa thức vô nghiệm.

d)

\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)

Do đó đa thức vô nghiệm.

e)

\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)

Do đó đa thức vô nghiệm.

f)

\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)

\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)

Đa thức có nghiệm $x=1, x=-3$