Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
a, Gọi giao điểm của BH với AE là I
Xét △ABH vuông tại A và △EBH vuông tại E
Có: AB = EB (gt)
BH là cạnh chung
=> △ABH = △EBH (ch-cgv)
Cách 1: (nếu ktra 1 tiết hoặc học kỳ)
=> ∠BAH = ∠EBH (2 góc tương ứng)
Xét △ABI và △EBI
Có: AB = EB (gt)
∠ABI = ∠EBI (cmt)
BI là cạnh chung
=> △ABI = △EBI (c.g.c)
=> AI = EI (2 cạnh tương ứng)
và ∠AIB = ∠EIB (2 góc tương ứng)
Mà ∠AIB + ∠EIB = 180o (2 góc kề bù)
=> ∠AIB = ∠EIB = 180o : 2 = 90o
Mà AI = EI (cmt)
=> BI là đường trung trực AE
=> BH là đường trung trực AE
Cách 2: (chỉ dùng cho học kỳ, không dùng cho 1 tiết, làm cho nhanh, ngắn)
Làm tiếp tục đến => △ABH = △EBH (ch-cgv)
=> AH = HE (2 cạnh tương ứng)
=> H thuộc đường trung trực của AE
Vì AB = BE (gt)
=> B thuộc đường trung trực AE
=> HB là đường trung trực của AE
b, Xét △HEC vuông tại H có: HC > HE (quan hệ giữa đường xiên và đường vuông góc)
=> HC > AH (AH = HE <= △ABH = △EBH)
c, Xét △ABC và △ADC cùng vuông tại A
Có: AC là cạnh chung
AB = AD (gt)
=> △ABC = △ADC (2cgv)
=> ∠ACB = ∠ACD (2 góc tương ứng) (1)
Xét △BDE vuông tại E và △BCA vuông tại A
Có: ∠ABC là góc chung
BE = BA (gt)
=> △BDE = △BCA (cgv-gnk)
=> ∠BDE = ∠BCA (2 góc tương ứng)
Mà ∠ACB = ∠ACD (cmt)
=> ∠BDE = ∠ACD (2)
Xét △ADH vuông tại A và △ECH vuông tại E
Có: AH = EH (cmt)
∠AHD = ∠EHC (2 góc đối đỉnh)
=> △ADH = △ECH (cgv-gnk)
=> DH = HC (2 cạnh tương ứng)
=> △HCD cân tại H
=> ∠HDC = ∠HCD (3)
Từ (1), (2), (3) => ∠HDC = ∠BDE
=> DH là phân giác BDC
d, Sai đề