Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
B=x-4+9/x-4
B=X-4/X-4+9/X-4
B=1+9/x-4
để B thuộc z suy ra 9/x-4 thuộc z
suy ra x-4 thuộc vào Ư của 9
x-4=1 suy ra x=5 suy ra B=10
x-4=3 suy ra x=7 suy ra B=4
x-4=9 suy ra x= 13 suy ra B=2
x-4=-1 suy ra x= 3 suy ra B=-8
x-4=-3 suy ra x=1 suy ra B=-2
x-4=-9 suy ra x=-5 suy ra B=0
b
ta có :
B= 1+9/x-4
để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5
suy ra Bmax=10 khi x=5
c tao có:
B=1+9/x-4
để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3
suy ra 9/x-4=-9
suy ra Bmin=-8 khi x=3
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
Ta có: \(B=\frac{10n}{n-3}=\frac{10n-30+30}{n-3}=10+\frac{30}{n-3}\)
a) B nguyên <=> \(\frac{30}{n-3}\)nguyên <=> n - 3 \(\inƯ\left(30\right)=\left\{\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\right\}\)
Ta có bảng:
n-3 | -30 | -15 | -10 | -6 | -5 | -3 | -2 | -1 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
n | -27 | -12 | -7 | -3 | -2 | 0 | 1 | 2 | 4 | 5 | 6 | 8 | 9 | 13 | 18 | 33 |
tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm |
Vậy n ...
b) B lớn nhất <=> \(\frac{30}{n-3}\) đạt giá trị lớn nhất
TH1: n - 3 < 0 => \(\frac{30}{n-3}< 0\)loại
TH2: n - 3 > 0
=> \(\frac{30}{n-3}>0\) khi đó: \(\frac{30}{n-3}\) lớn nhất <=> n - 3 = 1 <=> n = 4 ( thỏa mãn vì 4 - 3 > 0)
Vậy Giá trị lớn nhất của B = \(\frac{10.4}{4-3}=40\) tại n = 1
ta có: \(B=\frac{10n}{n-3}\left(n\ne3\right)\)
=> B=\(\frac{10\left(n-3\right)+30}{n-3}=10+\frac{30}{n-3}\)
a) Để B có giá trị nguyên thì \(\frac{30}{n-3}\)có giá trị nguyên
=> 30 chia hết cho n-3
Vì n nguyên => n-3 nguyên => n-3=Ư(30)={-30;-10;-6;-5;-2;-3;-1;1;2;3;5;6;10;30}
bạn lập bảng tìm giá trị của n
b) \(B=10+\frac{30}{n-3}\left(n\ne3\right)\)
để B đạt GTLN thì \(\frac{30}{n-3}\)đạt GTLN
=> n-3 là số nguyên dương nhỏ nhất
=> n-3=1
=> n=4 (tmđk)
1a) x.y = -15 = (-3).5 = (-5).3 = (-1).15 = (-15).1
Vậy x = { -3;5;-5;3;-1;15;-15;1}
Với y tương ứng = { 5;-3;3;-5;15;-1;1;-15}
b) x.y = -13 = (-1).13 = (-13).1
Vậy x = { -1;13;-13;1}
Với y tương ứng = { 13;-1;1;-13}
c) x.y = 85 = 1.85 = 85.1 = 5.17 = 17.5
Vậy x = {1;85;85;1;5;17;17;5}
Với y tương ứng = { 85;1;1;85;17;5;5;17}
2;3: Tự làm
-8(-7)+(-3).(-5)-(-4).9+2(-6)
=35+15-(-36)+(-12)
=74
15(-3)-(-7).(+2)+4.(-6)-7(-9)
=-45-(-14)+ (-24)-(-63)
8
n+15 chia het cho n-2
n-2+17 chia het cho n-2
suy ra 17 chia hết cho n-2
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
mấy cau sau tuong tu
Ta có:
/x-5/>=0 với mọi x
=> A>= 2019
=>Amin=2019
Vaayj: Amin=2019 Daau "=" xayr ra khi: x=5
\(A=\left|x-5\right|+2019\)
Mà \(\left|x-5\right|\ge0\)
Nên A có GTNN là 2019
Dấu " = " xảy ra khi: x - 5 = 0
x = 5
Vậy A có GTNN là 5 khi x = 5