Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+5x^2+5x+6x+6=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) \(x^3-3x^2+9x^2-27x+14x-42\)
\(=x^2\left(x+3\right)+9x\left(x+3\right)+14\left(x+3\right)\)
\(=\left(x^2+9x+14\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x+2\right)\left(x+7\right)\)
c) \(\left(x^2+x+4\right)^2+3x\left(x^2+x+4\right)+5x\left(x^2+x+4\right)+15x^2\)
\(=\left(x^2+x+4\right)\left(x^2+x+4+3x\right)+5x\left(x^2+x+4+3x\right)\)
\(=\left(x^2+6x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x^2+6x+4\right)\left(x+2\right)^2\)
d) \(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+16.24+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
a)\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)\(\left(x-3\right)\left(x-7\right)\left(x+2\right)\)
c)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)\left(x+1\right)\)
d)\(\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
Bài 1 :
\(a,\)\(x^3+6x^2+11x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)
\(=x^4-2x^3+14x^2-18x+45\)
\(=x^4+9x^2-2x^3-18x+5x^2+45\)
\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)
d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)
\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)
e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)
\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)
a)
\(x^3-7x-6=x^3-x-6x-6\)
\(=x(x^2-1)-6(x+1)\)
\(=x(x-1)(x+1)-6(x+1)=(x+1)[x(x-1)-6]\)
\(=(x+1)(x^2-x-6)=(x+1)[x^2-3x+2x-6]\)
\(=(x+1)[x(x-3)+2(x-3)]=(x+1)(x+2)(x-3)\)
b) \(x^3-6x^2+8x\)
\(=x(x^2-6x+8)\)
\(=x(x^2-4x-2x+8)\)
\(=x[x(x-4)-2(x-4)]=x(x-2)(x-4)\)
c) \(x^4+2x^3-16x^2-2x+15\)
\(=(x^4+2x^3-x^2-2x)-15x^2+15\)
\(=[(x^4-x^2)+(2x^3-2x)]-15(x^2-1)\)
\(=[x^2(x^2-1)+2x(x^2-1)]-15(x^2-1)\)
\(=(x^2-1)(x^2+2x)-15(x^2-1)=(x^2-1)(x^2+2x-15)\)
\(=(x^2-1)(x^2-3x+5x-15)=(x^2-1)[x(x-3)+5(x-3)]\)
\(=(x^2-1)(x+5)(x-3)=(x-1)(x+1)(x+5)(x-3)\)
d)
\(x^3-11x^2+30x=x(x^2-11x+30)\)
\(=x(x^2-5x-6x+30)\)
\(=x[x(x-5)-6(x-5)]=x(x-6)(x-5)\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}=\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\)
MTC: \(2\left(x-1\right)\left(x+1\right)\left(x-5\right)\)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}\\ =\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}=\dfrac{2\left(x+1\right)\left(3x-6\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x-5\right)\left(5x-5\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
a)
\(x^3+6x^2+11x+6=(x^3-x)+(6x^2+12x+6)\)
\(=x(x^2-1)+5(x^2+2x+1)\)
\(=x(x-1)(x+1)+6(x+1)^2\)
\(=(x+1)[x(x-1)+6(x+1)]=(x+1)(x^2+5x+6)\)
\(=(x+1)(x^2+2x+3x+6)\)
\(=(x+1)[x(x+2)+3(x+2)]=(x+1)(x+2)(x+3)\)
b) \(x^3+6x^2-13x-42\)
\(=x^3+2x^2+4x^2+8x-21x-42\)
\(=x^2(x+2)+4x(x+2)-21(x+2)\)
\(=(x+2)(x^2+4x-21)\)
\(=(x+2)[x^2-3x+7x-21)\)
\(=(x+2)(x+7)(x-3)\)
c)
\(x^3-5x^2+8x-4=(x^3-x^2)-4x^2+8x-4\)
\(=x^2(x-1)-4(x^2-2x+1)\)
\(=x^2(x-1)-4(x-1)^2\)
\(=(x-1)[x^2-4(x-1)]=(x-1)(x^2-4x+4)\)
\(=(x-1)(x-2)^2\)
d) \(2x^3-x^2+3x+6\)
\(=2x^3+2x^2-3x^2+3x+6\)
\(=2x^2(x+1)-3(x^2-x-2)\)
\(=2x^2(x+1)-3[x^2+x-2x-2]\)
\(=2x^2(x+1)-3[x(x+1)-2(x+1)]\)
\(=2x^2(x+1)-3(x+1)(x-2)\)
\(=(x+1)(2x^2-3x+6)\)