Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right)\cdot462-x=19\)
\(\Rightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)\cdot462-x=19\)
\(\Rightarrow\left(\frac{1}{11}-\frac{1}{21}\right)\cdot462-x=19\)
\(\Rightarrow\frac{10}{231}\cdot462-x=19\)
\(\Rightarrow20-x=19\Rightarrow x=1\)
Ta có:
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right).462-x=19\)
\(\Rightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right).462-x=19\)
\(\Rightarrow\left(\frac{1}{11}-\frac{1}{21}\right).462-x=19\)
\(\Rightarrow\frac{10}{231}.462-x=19\Leftrightarrow20-x=19\)
\(\Rightarrow x=20-19=1\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
\(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{3+\frac{3}{13}+\frac{3}{169}+\frac{3}{91}}{7+\frac{7}{13}+\frac{7}{169}+\frac{7}{91}}\)\(=\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{3.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{7.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\)
\(=\frac{12}{4}:\frac{3}{7}\)
\(=3.\frac{7}{3}=7\)
\(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{3+\frac{3}{13}+\frac{3}{169}+\frac{3}{91}}{7+\frac{7}{13}+\frac{7}{169}+\frac{7}{91}}\)
\(=\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{3\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{9}\right)}{7\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{9}\right)}\)
\(=3:\frac{3}{7}\)
\(=7\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
1, 3A = 1+1/3 +1/ 3^2 +......+1/3^99 2A = 3A-A =(1+1/3+1/3^2+.....+1/3^99) - (1/3+1/3^2+1/3^3 +.....+1/3^100) = 1 - 1/3^100 A= (1 - 1/3^100) / 2
A=-4/5+4/3+-5/4+14/5-7/3
A=(-4/5+14/5)+(4/3-7/3)+-5/4
A=2+-1+-5/4
A=1-5/4
A=-1/4
\(\frac{3}{11\text{x}13}+\frac{3}{13\text{x}15}+\frac{3}{15\text{x}17}+\frac{3}{17\text{x}19}+\frac{3}{19\text{x}21}\)
\(=\frac{3}{2}\text{x}\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{3}{2}\text{x}\left(\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{3}{2}\text{x}\frac{10}{231}\)
\(=\frac{5}{77}\)