Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=25\)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)
\(\Rightarrow-x=-36\)
\(\Rightarrow x=36\)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x.\left(x+1\right)=4.18\)
\(\Rightarrow x.\left(x+1\right)=72\)
Vì x và x + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow x\left(x+1\right)=8.9\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=8\end{cases}}\)
Bài 4
\(\frac{x-4}{y-3}=\frac{4}{3},x-y=5\)
Ta có :
\(x-y=5\)
\(\Rightarrow x=5+y\)
\(\Rightarrow\frac{y+5-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\frac{y+1}{y-3}=\frac{4}{3}\)\(\)
\(\Rightarrow\left(y+1\right).3=\left(y-3\right).4\)
\(\Rightarrow y.3+1.3=y.4-3.4\)
\(\Rightarrow y.3+3=y.4-12\)
\(\Rightarrow y.3-y.4=-12-3\)
\(\Rightarrow-1y=-15\)
\(\Rightarrow y=\left(-15\right):\left(-1\right)\)
\(\Rightarrow y=15\)
Vì x = y + 5
\(\Rightarrow x=15+4\)
\(\Rightarrow x=19\)
Vậy x = 19 , y = 15
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=4.\left(-9\right)\)
\(\Rightarrow-x=-9;x=4\)
\(\Rightarrow x=9;x=4\)
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
Ta có : \(2^x=8^{y+1}\Rightarrow2^x=2^{3y+3}\)
\(\Rightarrow x=3y+3\)
Và \(9^y=3^{x-y}\Rightarrow3^{2y}=3^{x-9}\)
\(\Rightarrow2y=x-9\)
Thay \(x=3y+3\) , thì ta lại có:
\(2y=3y+3-9\)
\(\Rightarrow2y=3y-6\)
\(\Rightarrow2y-3y=-6\)
\(\Rightarrow-y=-6\Rightarrow y=6\)
Thay \(y=6\) vào thì ta có : \(x=3y+3\)
\(\Rightarrow x=3.6+3=21\)
Vậy \(\left\{{}\begin{matrix}x=21\\y=6\end{matrix}\right.\)
\(2^x=8^{y+1}=\left(2^3\right)^{y+1}=2^{3y+3}\)
\(\Leftrightarrow x=3y+3\left(1\right)\)
\(9^y=3^{x-9}\)
\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)
\(\Leftrightarrow3^{2y}=3^{x-9}\)
\(\Leftrightarrow2y=x-9\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x+2y=3y+3+x-9\)
\(\Leftrightarrow x+y=2y+x-6\)