Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0
<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0
<=> -6x -4 = 0
<=> x= 4/6
1. Phân tích đa thức thành nhân tử:
a) \(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
c) \(x^3-19x-30\)
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x^2+5x+6\right)\left(x-5\right)\)
\(=\left(x^2+2x+3x+6\right)\left(x-5\right)\)
\(=\left[x\left(x+2\right)+3\left(x+2\right)\right]\left(x-5\right)\)
\(=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
3. Phân tích thành nhân tử:
c) \(81x^4+4\)
\(=\left(9x^2\right)^2+2.9x^2.2+2^2-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
d) \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right) \left(x^3-x^2+1\right)\)
Ta có: \(VT=2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(-a+b+c\right)\)
\(=2p\left(-a+b+c\right)\)
\(=2p\left(-a+2p-a\right)\)
\(=2p\left(-2a+2p\right)\) 9 ( Vì 2p - a = b + c )
\(=4p\left(-a+p\right)=4p\left(p-a\right)=VP\)
\(\Rightarrowđpcm\)
Ta có : \(4p\left(p-a\right)=2\left(a+b+c\right)\left(\dfrac{a+b+c}{2}-a\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(dpcm\right)\)
Vậy : ........
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)