Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi UCLN ( a,b ) = d
a = dm \(\left(m,n\inℕ^∗;m< n\right)\)
b = dn
Ta có:
dmn + d = 19
d ( mn + 1 ) = 19
\(\Rightarrow d\inƯ\left(19\right)=\left\{1;19\right\}\)
\(d=1\Rightarrow mn+1=19\)
\(\Rightarrow mn=18\)
\(\Rightarrow m\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
Ta có bảng sau:
m | 1 | 2 | 3 | 6 | 9 | 18 |
n | 18 | 9 | 6 | 3 | 2 | 1 |
a | 1 | 2 | 3 | 6 | 9 | 18 |
b | 18 | 9 | 6 | 3 | 2 | 1 |
Mà a<b \(\Rightarrow\left(a,b\right)\in\left\{\left(1,18\right);\left(2,9\right);\left(3,6\right)\right\}\)
\(+,d=19\Rightarrow mn+1=1\)
\(\Rightarrow mn=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\\n=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)( loại )
Vậy \(\left(a,b\right)\in\left\{\left(1,18\right);\left(2,9\right);\left(3,6\right)\right\}\)
a. Đặt d là UCLN(a và b).Để UCLN( a và b) = d <=> a = da' ; b = db' ; UCLN(a' và b') = 1
BCNN(a và b) = a.b/UCNN(a và b) = da'.db'/d = da'b'
Theo đề bài ta có:
BCNN(a và b) + UCNN(a và b) = 19
nên da'b' + d = 19
=> d(a'b' + 1) = 19
Do đó a'b' +1 là Ư(19) và a'b'+1 lớn hơn hoặc bằng 2
Theo đề bài a < b => a' < b' . Ta đc:
d | a'b'+1 | a'b' | a' | b' | a | b |
1 | 19 | 18=9.2 | 2 | 9 | 2 | 9 |
Vậy cặp số a=2 và b=9
b.Tương tự phần a. ta có:
BCNN(a và b) - UCLN(a và b) = 3
nên da'b' - d = 3
=> d(a'b' - 1) = 3
Do đó a'b' - 1 là Ư(3) = 1.Theo đề bài a < b => a' < b' . Ta đc :
d | a'b'-1 | a'b' | a' | b' | a | b |
3 | 1 | 2= 2.1 | 1 | 2 | 3 | 6 |
Vậy a = 3 ; b = 6
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+8\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+8k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+8k}{11k^2-8}\)
\(\dfrac{7c^2+8cd}{11c^2-8d^2}=\dfrac{7d^2k^2+8dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+8k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7c^2+8cd}{11c^2-8d^2}\)
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
Đặt \(\frac{a}{b}=\frac{c}{d}\)
=> a = bk ; c = dk
Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=9\left(\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\) ( 1 )
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{bk^2+b^2}{dk^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)