Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có AD vuông góc AE (tam giác ABC vuông tại A)
AD vuông góc DH (D là hình chiếu của H)
Suy ra; AE song song DC (dhnb)
Suy ra góc DHA = HAE (2 góc slt)
Xét tam giác adh vuông tại D và tâm giác HEA vuông tại E có:
AH chung
góc DHA = góc HAE (cmt)
suy ra tam giác ADH = tam giác HEA (ch-gn)
suy ra DH = EA (2 cạnh tương ứng)
AD = HE (2 cạnh tương ứng)
Cho tam giác ABC nhọn, đường cao AH. Vẽ điểm D và E sao cho các đường thẳng AB, Ac lad các đường trung trực của DH và EH. Lấy điểm M, N lần lượt là giao điểm của DE với AB và Ac
a) Chứng minh AB= Ae
b)Chứng minh góc DAE bằng 2 lần góc MHB
c)Chứng minh AH, BN, CM đồng quy tại 1 điểm
a: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
nên ADHE là hình chữ nhật
Suy ra: AE=HD; AD=HE
b: Xét ΔAHM có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔAHM cân tại A
=>AH=AM(1)
Xét ΔAHN có
AE là đường cao
AE là đường trung tuyến
Do đó:ΔAHN cân tại A
=>AH=AN(2)
Từ (1) và (2) suy ra AM=AN
c: \(\widehat{MAN}=\widehat{NAH}+\widehat{MAH}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=180^0\)
=>M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
=>HA là đường trung tuyến của ΔHMN