Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
a) Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)
b) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)
Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )
Suy ra tam giác HBA đồng dạng với tam giác HAC
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)
c) Do \(AH^2=BH\times HC\)
\(\Leftrightarrow AH^2=9\times16\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow12^2+16^2=AC^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=\sqrt{400}\)
\(\Leftrightarrow AC=20\left(cm\right)\)
Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)
Do BE là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)
\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)
Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)
Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm
a, xét tam giác abc vuông tại h
theo đlí Pitago co
\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
vậy bc=10cm
b,xét tam giác abcvà tam giác hab có
góc bac= góc bha= 90 độ(gt)
góc b chung
=>tam giác abc đồng dạng vs tam giác hba(gg)
c,từ cmb có tam giác abc đồng dạng vs tam giác hba
=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)
a) Dựa vào định lý Pytago , ta tính được BC = 10 cm
b) tam giác HBA đồng dạng với tam giác ABC theo trường hợp g.g
c) từ hai tam giác đồng dạng nêu trên
=>\(\frac{BH}{AB}=\frac{AB}{BC}\)
=>\(AB^2=BH.BC\left(đpcm\right)\)
ta tính được BH= 3.6 cm