K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

29 tháng 3 2017

mink ko biết

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

6 tháng 4 2018

a) Xét tam giác ABC và tam giác HAC có :

\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)

Chung \(\widehat{ACB}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)

b) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)

Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )

Suy ra tam giác HBA đồng dạng với tam giác HAC

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)

c) Do \(AH^2=BH\times HC\)

\(\Leftrightarrow AH^2=9\times16\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :

\(AH^2+HC^2=AC^2\)

\(\Leftrightarrow12^2+16^2=AC^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=\sqrt{400}\)

\(\Leftrightarrow AC=20\left(cm\right)\)

  Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)

Do BE là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)

\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)

Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)

Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

9 tháng 3 2019

a, xét tam giác abc vuông tại h

theo đlí Pitago co

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

vậy bc=10cm

b,xét tam giác abcvà tam giác hab có

góc bac= góc bha= 90 độ(gt)

góc b chung

=>tam giác abc đồng dạng vs tam giác hba(gg)

c,từ cmb có tam giác abc đồng dạng vs tam giác hba

=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)

21 tháng 4 2020

a) Dựa vào định lý Pytago , ta tính được BC = 10 cm

b)  tam giác  HBA đồng dạng với tam giác ABC theo trường hợp g.g

c) từ hai tam giác đồng dạng nêu trên

=>\(\frac{BH}{AB}=\frac{AB}{BC}\)

=>\(AB^2=BH.BC\left(đpcm\right)\)

 ta tính được BH= 3.6 cm