Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng
Tam giác ABC có:
+) N là trung điểm của AC
+) M là trung điểm của BC
=> MN là ĐTB của tam giác ABC
Tương tự c/m:
+) PN là ĐTB của tam giác ABC+) PM là ĐTB của tam giác ABC
*Có: MN là ĐTB của tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AB\)
\(\Rightarrow\dfrac{MN}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
Có: PN là ĐTB của tam giác ABC
\(\Rightarrow PN=\dfrac{1}{2}BC\)
\(\Rightarrow\dfrac{PN}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)
Có: PM là ĐTB của tam giác ABC
\(\Rightarrow PM=\dfrac{1}{2}AC\Rightarrow\dfrac{PM}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)
Xét tam giác MNP và tam giác ABC có:
\(\dfrac{MN}{AB}=\dfrac{NP}{BC}=\dfrac{MP}{AC}\left(=\dfrac{1}{2}\right)\)
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm