Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{13}+\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\)
\(=\frac{1}{13}+\left[\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13\cdot23}+\frac{1}{23\cdot33}+...+\frac{1}{1993\cdot2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\cdot\frac{1990}{26039}\right]\)
\(=\frac{1}{13}+\frac{597}{26039}\)
\(=\frac{200}{2003}\)
Đặt A= 1/13 + 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
A- 1/13 = 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
10/3 ( A-1/3) = 10/3. (3/13.23 + 3/ 23.33 + ... + 3/1993.2003)
10/3A - 10/9 = 10/13.23 + 10/ 23.33 + ... + 10/1993.2003
10/3A - 10/9 = 1/13 - 1/23 + 1/23 - 1/33 +...+ 1/1993- 1/2003
10/3A = 1/13 - 1/2003 + 10/9
10/3 A= ?
đến đây bn tự làm nha
10/3A - 10/9 = 1/13
Co quy luat nay ne em: 1+2=3=2.3:2; 1+2+3=6=3.4:2;...;1+2+3+...+2012=2012.2013:2
Suy ra ta co:
Mau so cua D=1 + 1/(2.3:2) + 1/(3.4:2) + 1/(4.5:2) + .... + 1/(2012.2013:2)
=1 + 2/2.3 + 2/3.4 + 2/4.5 + .... + 2/2012.2013
= 2.[1/2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/2012.2013]
=2.[1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ..... + 1/2012.2013]
=2.[1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +....+1/2012 - 1/2013
=2[1 - 1/2013]
=2.2012/2013
Vay D= 2.2012 / (2.2012:2013)=2013
Mẫu số = \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2012}\)
\(=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2012\right).2012:2}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(=2.\left(1-\frac{1}{2013}\right)=\frac{2.2012}{2013}\)
Phân số đề bài cho = \(\frac{2.2012}{\frac{2.2012}{2013}}=2013\)
\(A=9-\frac{3}{5}+\frac{2}{3}-7-\frac{7}{5}+\frac{3}{2}-3+\frac{9}{5}-\frac{5}{2}\)
\(=\left(9-7-3\right)+\left(\frac{9}{5}-\frac{7}{5}-\frac{3}{5}\right)+\left(\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2-\frac{1}{5}=-\frac{11}{5}\)
\(\left(\frac{1}{4}-x\right)\left(x+\frac{2}{5}\right)=0\)
Ta xét 2 trường hợp
\(\begin{cases}\frac{1}{4}-x=0\\x+\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{2}{5}\end{cases}}\)
tớ mới làm bài 1 thôi bài 2 3 tớ ko có thời gian
mh biết làm bài này rùi bn có cần mi2h đang cho bn ko?
\(N=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+..+\frac{10}{1993.2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)=\frac{3}{10}.\frac{2000}{6009}=\frac{200}{2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{3}{13.23}\)\(+\)\(\frac{3}{23.33}\)\(+...+\)\(\frac{3}{1993.2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}.\frac{1990}{26039}\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{597}{26039}\)
\(N=\)\(\frac{200}{2003}\)