Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{15.18}+\frac{1}{18.21}+...+\frac{1}{87.90}\)
\(=\frac{1}{3}(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90})\)
\(=\frac{1}{3}(\frac{1}{15}-\frac{1}{90})\)
\(=\frac{1}{3}(\frac{6}{90}-\frac{1}{90})\)
\(=\frac{1}{3}.\frac{5}{90}\)
\(=\frac{1}{54}\)
Ta có: 1= \(\frac{54}{54}\)
Suy ra A < 1 (đpcm)
3A=3*(1/15*18+1/18*21+...+1/87*90)
3A=3/15*18+3/18*21+...+3/87*90
3A=1/15-1/18+1/18-1/21+...+1/87-1/90
3A=1/15-1/90
3A=1/18
A=1/18 chia3
A=1/54
vì 1/54<1 nên A<1
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1\)
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
Gọi \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}\)
Ta có : \(B=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}.20=\frac{2}{3}\)
\(C=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}.20=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{2}{3}+\frac{1}{4}=\frac{11}{12}\)
Mà \(\frac{11}{12}>\frac{7}{12}\Rightarrow\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
\(\frac{3}{4}\)-\(\frac{-5}{9}\)-\(\frac{11}{36}\)=\(\frac{27}{36}\)-\(\frac{-20}{36}\)-\(\frac{11}{36}\)=1
\(\frac{1}{9}\)+\(\frac{-5}{3}\)-\(\frac{-13}{18}\)=\(\frac{2}{18}\)+\(\frac{-30}{18}\)-\(\frac{-13}{18}\)=\(\frac{-15}{18}\)=\(\frac{-5}{6}\)
\(\frac{3}{4}-\frac{-5}{9}-\frac{11}{36}=\frac{27}{36}-\frac{-20}{36}-\frac{11}{36}=\frac{47}{36}-\frac{11}{36}=\frac{36}{36}=1\)
\(\frac{1}{9}+\frac{-5}{3}-\frac{13}{18}=\frac{2}{18}+\frac{-30}{18}-\frac{13}{18}=\frac{-28}{18}+\frac{13}{18}=\frac{-15}{18}=\frac{-5}{6}\)
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
Giải:
Ta có công thức sau:
\(\frac{k}{a.b}=\frac{1}{a}-\frac{1}{b}\) với b - a = k hoặc a - b = k
Lắp vào biểu thức A, ta có:
\(A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.14}+...+\frac{4}{2005.2009}\\ =\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{2001}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2009}\)
\(=1+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2009}\\ =1-\frac{1}{2009}\\ =\frac{2009-1}{2009}\\ =\frac{2008}{2009}\)
Vậy \(A=\frac{2008}{2009}\)
Chúc bạn học tốt!
Thanks bạn nha!