K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

Giúp tớ với tớ cần gấp

b: \(a^2-a=a\left(a-1\right)\)

Vì a;a-1 là hai số nguyên liên tiếp

nên sẽ có ít nhất 1 số chẵn

=>Tích này chia hết cho 2

25 tháng 6 2017

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

19 tháng 10 2019

                                                 Bài giải

a, TH1 :  Với a lẻ ta có : a + 3 = lẻ + lẻ = chẵn

                                    a + 6 = lẻ + chẵn = lẻ

=> ( a + 3 ) ( a + 6 ) = chẵn x lẻ = chẵn \(⋮\) 2

TH2 : Với a chẵn ta có : a + 3 = chẵn + lẻ = lẻ

                                    a + 6 = chẵn + chẵn = chẵn \(⋮\) 2

b, TH1 : Với a lẻ ta có : a + 5 = lẻ + lẻ =chẵn

=> a ( a + 5 ) = lẻ x chẵn = chẵn \(⋮\) 2

TH2 : Với a chẵn ta có : a + 5 = chẵn + lẻ = lẻ

=> a ( a + 5 ) = chẵn x lẻ = chẵn \(⋮\) 2

c, TH1 : a,b cùng chẵn

=> ab ( a + b ) = chẵn x chẵn x ( chẵn + chẵn ) = chẵn \(⋮\) 2

TH2 : a,b cùng lẻ

=> ab ( a + b ) = lẻ x ( lẻ + lẻ ) = chẵn \(⋮\) 2

TH3 : a,b một thừa số chẵn, một thừa số lẻ

=> ab ( a + b ) = chẵn ( lẻ + chẵn ) = chẵn x lẻ = chẵn \(⋮\) 2

13 tháng 7 2016

a/Gọi 3 số tn liên tiếp là a , a+1 , a+2

Ta có A=a.(a+1).(a+2)

Chứng minh A chia hết cho 2: Chỉ có hai trường hợp

+Nếu a=2k =>A chia hết cho 2

+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2

Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp

+Nếu a=3k =>A chia hết cho 3

+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3

+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3

vì A chia hết cho cả 2 và 3

mà ƯCLN(2,3)=1

vậy A chia hết cho 6

bài b bạn làm tương tự

13 tháng 7 2016

1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)

Trong 3 số tự nhiên liên tiếp thì:

  • Có ít nhất 1 số chẵn: => A chia hết cho 2
  • Có 1 số chia hết cho 3 => A chia hết cho 3.

A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm

2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)

  • a và a+1 là 2 số tự nhiên liên tiếp nên sẽ có 1 số chẵn => B chia hết cho 2.
  • Nếu a hoặc a+1 chia hết cho 3 thì B chia hết cho 3.
  • Bếu a và a+1 không chia hết cho 3 thì từ kết quả câu 1./ số tự nhiên tiếp theo: a+2 sẽ chia hết cho 3 hay 2a + 4 chia hết cho 3 hay 2a + 1 + 3 chia hết cho 3 => 2a + 1 chia hết cho 3 => B chia hết cho 3.

Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.

27 tháng 2 2020

a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)

+ xét a chia hết cho 3 (đpcm)

+ xét a chia 3 dư 1 => a = 3k + 1      

=> a +  2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3

+ xét a chia 3 dư 2 => a = 3k + 2

=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3

vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

b, đề không rõ lắm

27 tháng 2 2020

Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3

\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)

\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)

=> A \(⋮3\left(ĐPCM\right)\)

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

20 tháng 10 2019

a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3

Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2 

=> đpcm

b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2

Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.

Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3

Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3

Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.