Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBKD vuông tại K và ΔBHA vuông tại H có
góc B chung
=>ΔBKD đồng dạng với ΔBHA
=>BK/BH=BD/BA
=>BK*BA=BH*BD; BK/BD=BH/BA
b: Xét ΔBKH và ΔBDA có
BK/BD=BH/BA
góc B chung
=>ΔBKH đồng dạng với ΔBDA
a: Xét ΔBKD vuông tại K và ΔBHA vuông tạiH có
góc KBD chung
=>ΔBKD đồng dạng với ΔBHA
=>BK/BH=BD/BA
=>BK*BA=BH*BD; BK/BD=BH/BA
b: Xét ΔBKH và ΔBDA có
BK/BD=BH/BA
góc KBH chung
=>ΔBKH đồng dạng với ΔBDA
c: ΔBKH đồng dạng với ΔBDA
=>\(\dfrac{S_{BKH}}{S_{BDA}}=\left(\dfrac{BH}{BA}\right)^2=\dfrac{4}{9}\)
=>\(S_{BDA}=64:\dfrac{4}{9}=144\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho
BD = BA.
Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.
a)Chứng minh : ; c) Chứng minh : AK = AH. | b)Chứng minh : AD là phân giác của góc HAC |
BAˆD = BDˆA