K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2019

ĐKXĐ: \(x\ge2017\)

\(\Leftrightarrow\sqrt{x-2017}+2\sqrt{x-2017}=3\)

\(\Leftrightarrow3\sqrt{x-2017}=3\)

\(\Rightarrow\sqrt{x-2017}=1\Rightarrow x=2018\)

b/ \(\Leftrightarrow9xy+3x+6y=15\)

\(\Leftrightarrow3y\left(3x+2\right)+3x+2=17\)

\(\Leftrightarrow\left(3y+1\right)\left(3x+2\right)=17=\left(-17\right).\left(-1\right)=\left(-1\right).\left(-17\right)=1.17=17.1\)

TH1: \(\left\{{}\begin{matrix}3y+1=-17\\3x+2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=-6\end{matrix}\right.\)

3 trường hợp còn lại bạn tự xét tương tự

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với

19 tháng 9 2018

a, \(x^2+2=2\sqrt{x^2+1}\)

\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)

\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)

b,\(x^2+x+2y^2+y=2xy^2+xy+3\)

\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)

\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)

\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)

đoạn sau bạn tự giái tiếp nhé

19 tháng 9 2018

a) \(x^2+2=2\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)

\(\Leftrightarrow x=0\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

3 tháng 8 2017

Bài 1:

a)bình lên done nhé

b)\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}+2\sqrt{x-1}-\sqrt{x+2}-2=0\)

ĐẶt \(\sqrt{x-1}=a;\sqrt{x+2}=b\)

thì được \(ab+2a-b-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(b+2\right)=0\Rightarrow a=1;b=2...\)

bài 2:a) chuyển vế áp dụng AM-GM

4 tháng 8 2017

AM-GM la j v