K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 1:Cho tam giác ABC có  và BC=6cma)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBCb)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEFc)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACNd)So sánh 2 góc ENC và xBABài...
Đọc tiếp

 Bài 1:Cho tam giác ABC có [​IMG] và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx [​IMG] BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có [​IMG] 
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có [​IMG] 
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH [​IMG] tại H,qua C kẻ CK [​IMG] tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và [​IMG] 
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH [​IMG] tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm, [​IMG] 
a)Qua B kẻ [​IMG] tại D và [​IMG] tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD

0
Bài 1:Cho tam giác ABC có  và BC=6cma)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBCb)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEFc)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACNd)So sánh 2 góc ENC và xBABài...
Đọc tiếp

Bài 1:Cho tam giác ABC có [​IMG] và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx [​IMG] BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có [​IMG] 
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có [​IMG] 
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH [​IMG] tại H,qua C kẻ CK [​IMG] tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và [​IMG] 
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH [​IMG] tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm, [​IMG] 
a)Qua B kẻ [​IMG] tại D và [​IMG] tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD

Help me please!!

0
Bài 1:Cho tam giác ABC có  và BC=6cma)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBCb)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEFc)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACNd)So sánh 2 góc ENC và xBABài...
Đọc tiếp

Bài 1:Cho tam giác ABC có  và BC=6cm
a)Trên nửa mặt phẳng bờ là đường thẳng BC có chứa A vẽ tia Bx  BC.Giải thích vì sao BA là tia phân giác của góc xBC
b)Đường thẳng trung trực a của đoạn thẳng BC cắt các đường thẳng AB và AC tại E và F.Tính số đo của góc AEF
c)Qua C vẽ đường thẳng song song với AB,đường thẳng này cắt đường thẳng a tại N.Tính số đo góc ACN
d)So sánh 2 góc ENC và xBA
Bài 2:Cho tam giác ABC có  
a)Tia phân giác của góc ABc cắt AC tại D.Qua A vẽ đường thẳng song song với BD,đường thẳng này cắt đường thẳng BC tại E.So sánh 2 góc BEA và BAE
b)Qua A vẽ đường thẳng xy song song BC.Tính số đo góc BAI
Bài 3:Cho tam giác ABC có  
a)Hai tia phân giác của góc ABC và góc ACB cắt nhau tại I.Qua I vẽ đường thẳng song song với BC,đường thẳng này cắt các đường thẳng AB và AC tại D và E.Tính số đo góc ACI và góc CIE
b)So sánh 2 góc DIB và ABI
c)Qua A kẻ AH  tại H,qua C kẻ CK  tại K.Giải thích vì sao AH//CK
d)Tính số đo góc CAH
Bài 8:Cho tam giác ABC có BC=8cm và  
a)Qua A vẽ đường thẳng xy song song với BC(tia Ax thuộc nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B).Tính số đo góc yAB và BAC
b)Vẽ AH  tại H.Tính số đo các góc BAH và CAH
Bài 9:Cho tam giác ABC có BC=6cm,  
a)Qua B kẻ  tại D và  tại E,2 đường thẳng BD và CE cắt nhau tại H.Qua B và C lần lượt vẽ các đường thẳng vuông góc với AB và AC,2 đường thẳng này cắt nhau tại K.Vì sao CK//BD và BK//CE?
b)Tính số đo góc DBC
c)TÍnh số đo các góc HCB và EHD

0
Bài 1:Cho góc nhọn xOy,điểm H nằm trên tia phân giác của góc xOy.Từ H dựng các đường vuông góc xuống 2 cạnh Ox và Oy (A thuộc Ox,B thuộc Oy) a)Chứng minh tam giác HAB là tam giác cân b)Gọi D là hình chiếu của điểm A trên Oy,C là giao điểm của AD với OH.Chứng minh BC vuông góc với Ox c)Khi góc xOy = .Chứng minh OA=2OD Bài 2:Cho tam giác ABC vuông ở C,có góc A= ,tia phân giác của cắt BC ở E.Kẻ EK vuông góc...
Đọc tiếp

Bài 1:Cho góc nhọn xOy,điểm H nằm trên tia phân giác của góc xOy.Từ H dựng các đường vuông góc xuống 2 cạnh Ox và Oy (A thuộc Ox,B thuộc Oy)
a)Chứng minh tam giác HAB là tam giác cân
b)Gọi D là hình chiếu của điểm A trên Oy,C là giao điểm của AD với OH.Chứng minh BC vuông góc với Ox
c)Khi góc xOy =[​IMG] .Chứng minh OA=2OD
Bài 2:Cho tam giác ABC vuông ở C,có góc A=[​IMG] ,tia phân giác của [​IMG] cắt BC ở E.Kẻ EK vuông góc với AB (K thuộc AB),kẻ BD vuông góc AE (D thuộc AE).Chứng minh:
a)AK=KB
b)AD=BC
Bài 3:Cho tam giác ABC cân tại A và 2 đường trung tuyến BM,CN cắt nhau tại K.Chứng minh:
a)[​IMG]
b)[​IMG] cân tại K
c)BC<4.KM
Bài 4:Cho tam giác ABC vuông tại A có BD là phân giác.Kẻ DE vuông góc với BC (E thuộc BC).Gọi F là giao điểm của AB và DE.Chứng minh:
a)BD là đường trung trực của AE
b)DF=DC
c)AD<DC
d)AE//FC
Bài 5:Cho tam giác ABC vuông tại A,góc B có số đo bằng [​IMG] .Vẽ AH vuông góc với BC tại H
a)So sánh AB và AC; BH với HC
b)Lấy điểm D thuộc tia đối của tia HA sao cho HD=HA.Chứng minh rằng 2 tam giác AHC và DHC bằng nhau
c)Tính số đo của [​IMG]
Bài 6:Cho tam giác ABC cân tại A.Vẽ đường trung tuyến AM.Từ M kẻ ME vuông góc với AB tại E,kẻ MF vuông góc với AC tại F
a)Chứng minh: [​IMG]
b)Chứng minh AM là trung trực của EF
c)Từ B kẻ đường thẳng vuông góc với AB tại B,từ C kẻ đường thẳng vuông góc với AC tại C,2 đường thẳng này cắt nhau tại D.Chứng minh rằng 3 điểm A,M,D thẳng hàng
Bài 7:Cho tam giác ABC cân tại A,đường cao AH.Biết AB=5cm,BC=6cm
a)TÍnh độ dài các đoạn thẳng BH,AH?
b)Gọi G là trọng tâm của tam giác ABC.Chứng minh 3 điểm A,G,H thẳng hàng
Bài 8:Cho tam giác ABC có AC>AB,trung tuyến AM.Trên tia đối của tia MA lấy điểm D sao cho MD=MA,nối C với D
a)Chứng minh [​IMG] ,từ đó suy ra [​IMG]
b)Kẻ đường cao AH,gọi E là 1 điểm nằm giữa A và H.So sánh HC và HB; EC và EB

1

a: Xét ΔOAH vuông tại A và ΔOBH vuông tại B có

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó; ΔOAH=ΔOBH

Suy ra: HA=HB

b: Ta có: OA=OB

HA=HB

Do đó: OH là đường trung trực của AB

Xét ΔOAB có 

OH là đường cao

AD là đường cao

OH cắt AD tại C

Do đó: C là trọng tâm của ΔOAB

Suy ra: BC\(\perp\)Ox

5 tháng 8 2016

bạn tự vẽ hình nha

Xét tg AEC và tg AEK có:

góc ACE= góc AEK ( = 90 độ )

AE : cạnh chung

góc A= góc A2 ( AE là phân giác )

=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )

=> AC= AK ( 2 cạnh tương ứng )

b) Vì AC= AK ( theo a)

=> tg ACK cân tại A

Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK

c) Xét tg AEK và tg BEK có:

góc AKE= góc BKE ( = 90 độ )

KE : cạnh chung

góc KAE = góc KBE ( đồng vị )

=> tg AEK= tg BEK ( c-g-c)

=> KA= KB

 

5 tháng 8 2016

a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có

ABE=KBE(BE là p/g ABK)

BE là cạnh chung

Tam giác ABE=Tam giác BKE (ch-gn)

=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.

b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA

Vậy KB=KC

c/EC>AB

Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB

d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.

Thật vậy, tam giác AEN và tam giác KEC có

NAE=EKC (=90 độ)

EA=EK (c/mt)

EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)

Vậy tam giác AEN=tam giác KEC (ch-gn)

=> AEN=KEC

2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)

Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)

ˆKEB=60o

Xét hai tam giác vuông ΔAEK và ΔKEB có:

ˆAEK=ˆKEB=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90o

⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)

Xét hai tam giác vuông ΔABC và ΔABD có:

ABAB chung

ˆBAC=ˆABD=60o ( gt + cmt)

ˆDAB=ˆABC=30o (g.c.g)

⇒ΔABC=ΔABD

⇒AD=BC (hai cạnh tương ứng)

image

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)

Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)

ˆKEB=60oKEB^=60o

Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:

ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90oEKB^=EKA^=90o

⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)

Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:

ABAB chung

ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)

ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)

⇒ΔABC=ΔABD⇒ΔABC=ΔABD

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

image

26 tháng 8 2017

A B C E F 1 2 D M P I O

a, +) Xét \(\Delta OAE\) và \(\Delta OAF\) có:

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)

OA là cạnh chung

\(\Rightarrow\Delta OAE=\Delta OAF\) (cạnh huyền, góc nhọn)

=> OE = OF và AE = À

+) Xét \(\Delta OPB\) và \(\Delta OPC\) có:

BP = PC (gt)

\(\widehat{BPO}=\widehat{CPO}=90^o\) (vì OP là trung trực của BC)

OP là cạnh chung

\(\Rightarrow\Delta OPB=\Delta OPC\left(c.g.c\right)\)

=> OB = OC

+) Xét \(\Delta BOE\) và \(\Delta COF\) có:

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

OB = OC (cmt)

OE = OF (cmt)

\(\Rightarrow\Delta BOE=\Delta COF\) (cạnh huyền, cạnh góc vuông)

=> BE = CF (đpcm)

b, Kẻ BD // AC (D \(\in\) EF)

\(\Rightarrow\widehat{BDM}=\widehat{MFC};\widehat{MBD}=\widehat{MCF}\) (so le trong)

Vì \(\Delta AEF\) cân (AE = AF) => \(\hept{\begin{cases}\widehat{BDE}=\widehat{AFE}\\\widehat{BED}=\widehat{AFE}\end{cases}\Rightarrow\widehat{BDE}=\widehat{BED}}\) => \(\Delta BED\) cân => BE = BD = CF (vì BE = CF)

Xét \(\Delta MBD\) và \(\Delta MCF\) có:

\(\widehat{MBD}=\widehat{MCF}\) 

BD = CF (cmt)

\(\widehat{BDM}=\widehat{MFC}\)

\(\Rightarrow\Delta MBD=\Delta MCF\) (g.c.g)

=> MB = MC

=> M là trung điểm của BC (đpcm)

c, Xét \(\Delta AEI\)và \(\Delta AFI\) có:

AE = AF

góc A1 = góc A2

AI là cạnh chung

\(\Rightarrow\Delta AEI=\Delta AFI\left(c.g.c\right)\)

=> góc AIE = góc ÀI

Mà góc AIE và góc AIF kề bù => \(\widehat{AIE}=\widehat{AIF}=90^o\Rightarrow AO⊥EF\) tại I

Áp dụng định lý Py-ta-go vào các tam giác vuông:

\(\Delta IAE\) có \(\widehat{I}=90^o\Rightarrow IA^2+IE^2=AE^2\left(1\right)\)

\(\Delta IAF\) có \(\widehat{I}=90^o\Rightarrow IA^2+IF^2=AF^2\left(2\right)\)

\(\Delta IOE\) có \(\widehat{I}=90^o\Rightarrow IE^2+IO^2=EO^2\left(3\right)\)

\(\Delta IOF\) có \(\widehat{I}=90^o\Rightarrow IF^2+IO^2=OF^2\left(4\right)\)

Cộng (1),(2),(3),(4) vế với vế ta được:

\(2\left(IA^2+IE^2+IO^2+IF^2\right)=\left(AE^2+EO^2\right)+\left(AF^2+OF^2\right)\)

\(\Delta AEO\)vuông ở E nên \(AE^2+EO^2=AO^2\) (5)

\(\Delta AFO\)vuông ở F nên \(AF^2+OF^2=AO^2\) (6)

Từ (5) và (6) => \(2\left(IA^2+IE^2+IF^2+IO^2\right)=AO^2+AO^2=2AO^2\) hay \(IA^2+IE^2+IO^2+IF^2=AO^2\) (đpcm)

26 tháng 8 2017

VẼ OP cho đúng chỗ nhé mình vẽ hơi sai và qua câu b thì xóa OP mà vẽ M vào nhé

19 tháng 3 2020

a) Vì Bˆ=CˆB^=C^

=> ΔABCΔABC cân tại A
=> BˆB^ và CˆC^ cùng nhọn

b) Xét ΔABHΔABH và ΔACKΔACK có:

AB = AC (ΔABCΔABC cân)

Aˆ(chung)A^(chung)

AHBˆ=AKCˆ=900AHB^=AKC^=900

Do đó: ΔABH=ΔACK(ch−gn)ΔABH=ΔACK(ch−gn)

=> BH = CK (hai cạnh tương ứng)

10 tháng 6 2017

C A B E K D

10 tháng 6 2017

B) Ta có : góc CBA + góc BAC = 90 độ [ tam giác ABC vuông tại C ]
\Rightarrow góc CBA + 60 độ = 90 độ - 30 độ = 30 độ
mà góc KAE = 30 độ
Vậy góc CBA = góc KAE = 90 độ