Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)
Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!
A B C I E K
a) Xét tứ giác ABCI
\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)
\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)
\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)
Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)
Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)
Xét \(\Delta ABC\)và \(\Delta BIC\)có
\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)
BC là cạnh chung
\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)
=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)
=> AC = BI
=> AB = CI
Xét tứ giác ABCI
Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)
VÀ AC = BI ; AB = CI
=> Tứ giác ABCI là hình chữ nhật
=>Hai đường chéo BC và AI cắt nhau tại E
=> E là trung điểm của BC và AI
\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\)
Câu b,c tối mình sẽ suy nghĩ sau
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
b
AH vuông góc với BC
BC song song với EK
=>AH vuông góc với EK
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
Bài giải :
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC