K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)

Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!

A B C I E K

a) Xét tứ giác ABCI

\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)

\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)

\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)

Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)

Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)

Xét \(\Delta ABC\)và \(\Delta BIC\)

\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)

BC là cạnh chung

\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)

=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)

=> AC = BI 

=> AB = CI

Xét tứ giác ABCI

Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)

VÀ AC = BI ; AB = CI

=> Tứ giác ABCI là hình chữ nhật

=>Hai đường chéo BC và AI cắt nhau tại E 

=> E là trung điểm của BC và AI

\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\) 

Câu b,c tối mình sẽ suy nghĩ sau

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

23 tháng 12 2015

b

AH vuông góc với BC

BC song song với EK

=>AH vuông góc với EK

23 tháng 12 2015

làm ơn làm phước tick mình lên 60 với

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0
12 tháng 6 2017

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC

17 tháng 8 2018

Bài giải : 

Bài 1:

a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)

Mà góc xDc = 70 độ (gt)

Nên góc ACB = 70 độ

b) Ta có:

góc BAD + góc BAC = 180 độ do 2 góc kề bù

góc BAD = 180 độ - 40 độ = 140 độ

Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD

Nên góc BAy = 1/2 .140 độ = 70 độ   (1)

Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:

góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ   (2)

Từ (1) và (2) suy ra góc BAy = góc ABC

Mà 2 góc này nằm ở vị trí so le trong 

Nên Ay // BC.

Bài 2:

a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)

Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC) 

Nên góc xBC = góc BMN.

b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)

Mà  góc xBC = góc BMN ( chứng minh câu a)

Nên góc xBC = góc MNy

Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)

=.> góc MNy = góc CNy

=> Ny là tia phân giác của góc MNC