Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=100+98+96+...+2−97−95−...1A=100+98+96+...+2−97−95−...1
A=100+(98−97)+(96−95)+...(2−1)A=100+(98−97)+(96−95)+...(2−1)
A=100+1+1+1+...+1A=100+1+1+1+...+1
A=100+1.49A=100+1.49
A=100+49A=100+49
A=149
a, 100 + 98 + 96 + ... + 2 - 9 7 - 95 - .. -1
= 100 + (98 - 97) + (96-95) + ... + + ... + (2 - 1)
= 100 + 1 + 1 + 1 +.. +1
= 100 + 1 x 49
= 100 + 49
= 149
b , 1 + 2 - 3 - 4 + 5 + 6 - .... -299 - 330 +301 + 302
=( 1 + 2 - 3) + ( -4 + 5 + 6 -7 ) +... +(298 - 299 -300 +301 ) + 302
= 0 + 0 + .. + 0 + 302
= 302
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
S = 22 + 42 + 62 + ... + 202
S = 22.(12 + 22 + 32 + ... + 102)
S = 4 . 385
S = 1540
Ta có:S=22+42+...........+202
=22.12+22.22+............+22.102
=22.(12+22+...........+102)
=4.385
=1540
\(=\frac{5}{4}.\left(-\frac{1}{3}+-\frac{1}{3}+\frac{3}{7}+\frac{4}{7}\right)=\frac{5}{4}.0=0\)
\(=\frac{9}{5}\left(-\frac{3}{22}+-\frac{3}{5}\right)=-\frac{729}{550}\)