Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
Bài 1: \(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)
ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\cdot\sqrt{y-1}\cdot2+4+\left(z-2\right)-2\cdot\sqrt{z-2}\cdot3+9=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+\left(\sqrt{z-2}-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=2\\\sqrt{z-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)
Bài 2:
Q=|x+2|+|x-2|>=|x+2+2-x|=4
Dấu = xảy ra khi (x+2)(x-2)<=0
=>-2<=x<=2
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\) = l x+2 l + l 2-x l \(\ge\) l x+2+2-x l = l 4 l = 4
Dấu " = " xảy ra khi và chỉ khi
(x+2)(2-x) \(\ge\)0
<=> x+2 \(\ge\)0 và 2-x \(\ge\) 0
hoặc x+2 \(\le\)0 và 2-x \(\le\)0
<=> x \(\ge\)-2 và x\(\le\)2
hoặc x\(\le\)-2 và x\(\ge\)2
<=> -2\(\le\)x\(\le\)2
vậy GTNN của Q = 4 khi -2\(\le\)x\(\le\)2
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
Bài 2:
Q=|x+2|+|x-2|=|x+2|+|2-x|>=|x+2+2-x|=4
Dấu = xảy ra khi (x+2)(x-2)<=0
=>-2<=x<=2