K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

 

1/

a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)<0\)

b/ \(Q\left(x\right)=-\left(9x^2-24x+16+32\right)=-\left[\left(3x-4\right)^2+32\right]\)

Tương tự như câu a => Q(x)<0

2/

b/ \(B=-\left(x^2-4x+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-5\ge-5\Rightarrow-\left[\left(x-2\right)^2-5\right]\le5\)

=> GTLN(B)=5

c/ Nhân phá ngoặc, rút gọn được

\(C=-x^2\left(x^2+10x+25\right)+36=-x^2\left(x+5\right)^2+36\)

Lý luận tượng tự câu b => \(C\le36\)

=> GTLN(C)=36

 

9 tháng 7 2016

giúp tôi làm bài trên đi

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi

18 tháng 10 2016

đơn giản wá 

8 tháng 7 2019

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

28 tháng 7 2017

2) a) Đặt \(\left(x-1\right)\left(x+6\right)=t\)

\(\Leftrightarrow x^2+5x-6=t\)

\(\left(x+2\right)\left(x+3\right)=x^2+5x+6=t+12\)

\(A=t\left(t+12\right)+2042\)

\(A=t^2+12t+2042\)

\(A=\left(t+6\right)^2-6^2+2042\)

\(A=\left(t+6\right)^2+2006\)

\(\left(t+6\right)^2\ge0\Rightarrow\left(t+6\right)^2+2006\ge2006\)

\(Min_A=2006\) khi \(\left(t+6\right)^2=0\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy: MinA=2006 khi x=0 hoặc x=5

Bài 2b làm tương tự

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)