K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

a)(2x+y^2)^3

\(=\left(2x\right)^3+3.\left(2x\right)^2y^2+3.2x\left(y^2\right)^2+\left(y^2\right)^3\)

\(=8x^3+3.4x^2y^2+6xy^4+y^6\)

\(=8x^3+12x^2y^2+6xy^4+y^6\)

15 tháng 7 2019

c)(3x^2-2y)^

\(\left(3x^2\right)^3-3\left(3x^2\right)^2.2y+3.\left(3x^2\right)\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^6-3.9x^4.2y+3.3x^2.4y^2-8y^3\)

\(=27x^6-54x^4y+36x^2y^2-8y^3\)

6 tháng 11 2016

1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)

2. C. \(\left(x-y\right)\left(x-y-3\right)\)

3. D. \(\left(x-2\right)\left(x+1\right)\)

4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)

5. D. \(3\left(x-2y\right)\)

6 tháng 11 2016

1. Trong các kết quả sau kết quả nào sai

A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)

B. x(y-1) +3(y-1)= -(1-y)(x+3)

C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)

2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:

A. (x+y)(x-y+3)

B. (x-y)(2x-2y+3)

C. (x-y)(x-y-3)

D. Cả 3 câu đều sai

3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử

A. (x-2)x

B. (x-2)^2.x

C. x(2x-4)

D. (x-2)(x+1)

4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử

A. (xy-2y)(5x^2-15x^2)

B. y(x-2)(5x^2-15x^2)

C. y(x-2)5x(x-3)

D. (xy-2y)5x(x-3)

5. Kết quả phân tích đa thức 3x-6y thành nhân tử là

A. 3(x-6y)

B. 3(3x-y)

C. 3(3x-2y)

D. 3(x-2y)

20 tháng 10 2020

Bài 1.

a) -2x( -3x + 2 ) - ( x + 2 )2

= 6x2 - 4x - ( x2 + 4x + 4 )

= 6x2 - 4x - x2 - 4x - 4

= 5x2 - 8x - 4

b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )

= x3 + 8 + 2( x + 1 )( x - 1 )

= x3 + 8 + 2( x2 - 1 )

= x3 + 8 + 2x2 - 2

= x3 + 2x2 + 6

c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2

= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1

= 4

d) x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

Bài 2.

a) 4x2 - 4xy + y2 = ( 2x - y )2

b) 9x3 - 9x2y - 4x + 4y

= 9x2( x - y ) - 4( x - y )

= ( x - y )( 9x2 - 4 )

= ( x - y )( 3x - 2 )( 3x + 2 )

c) x3 + 2 + 3( x3 - 2 )

= x3 + 2 + 3x3 - 6

= 4x3 - 4

= 4( x3 - 1 )

= 4( x - 1 )( x2 + x + 1 )

Bài 3.

2( x - 2 ) = x2 - 4x + 4

⇔ ( x - 2 )2 - 2( x - 2 ) = 0

⇔ ( x - 2 )( x - 2 - 2 ) = 0

⇔ ( x - 2 )( x - 4 ) = 0

⇔ x = 2 hoặc x = 4

14 tháng 7 2019

Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .

1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)

\(=>A=-12x+16\)

2) \(=>B=8x^3+27-8x^3+2=29\)

3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)

4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)

5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)

\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)

\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)

6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)

k cho mik nha , 

5 tháng 7 2019

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

Vậy tập nghiệm \(S=\left\{-4;0;4\right\}\)

5 tháng 7 2019

b) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)

Mà \(x^2+10>0\)nên \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm S = { 0;2}

16 tháng 10 2016

a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)

c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)

d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)

17 tháng 8 2021

đề bài là rút gọn à

16 tháng 8 2019

\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)

\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)

\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)

\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)

\(=0+0+0+0-15\)

\(=-15\)

\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)

\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)

\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)

\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)

\(=0+0+0-18\)

\(=-18\)

\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)

\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)

\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)

\(=x^3-8y^3-3+8y^3\)

\(=x^3-3\)

24 tháng 7 2018

a) \(3x^2-3y^2-x-y\)

\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)

\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(\Leftrightarrow3\left(x-y\right)\)

d) \(3x^2-7x+4\)

\(\Leftrightarrow3x^2-7x+7-3\)

\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)

\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)

\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)

e) \(-2x^2+3x-1\)

\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)

\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)

f) \(x^2+2xy+y^2-2x-2y\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)

k) \(2x^2+5x+3\)

\(\Leftrightarrow2x^2+2x+3x+3\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)

l) \(x^2-2x-y^2+1\)

\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)

\(\Leftrightarrow\left(x-1\right)^2-y^2\)

\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)

24 tháng 7 2018

a) \(3x^2-3y^2-x-y\)

\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)

\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(\Leftrightarrow3\left(x-y\right)\)

d) \(3x^2-7x+4\)

\(\Leftrightarrow3x^2-7x+7-3\)

\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)

\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)

\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)

e) \(-2x^2+3x-1\)

\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)

\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)

f) \(x^2+2xy+y^2-2x-2y\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)

k) \(2x^2+5x+3\)

\(\Leftrightarrow2x^2+2x+3x+3\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)

l) \(x^2-2x-y^2+1\)

\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)

\(\Leftrightarrow\left(x-1\right)^2-y^2\)

\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)