K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

b: B=x^2-6x+8+3

=x^2-6x+11

=x^2-6x+9+2

=(x-3)^2+2>=2>0 với mọi x

c: =x^2-4xy+4y^2+x^2+2x+1+4

=(x-2y)^2+(x+1)^2+4>=4>0 với mọi x,y

4 tháng 9 2021

a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)

c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0 

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

1 tháng 8 2023

Mình cảm ơn nha

 

12 tháng 10 2020

\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)

=> Chưa thể khẳng định A dương

\(B=9x^2-6xy+2y^2+1\)

\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)

\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(C=x^2-2x+y^2+4y+6\)

\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

9 tháng 8 2018

a)(3x-1)^2=1>0

b)(x+1/2)^2=3/4>0

c)1/2[(2x+1)^2+1]>0

9 tháng 8 2018

a﴿﴾3x‐1﴿^2=1>0

b﴿﴾x+1/2﴿^2=3/4>0

c﴿1/2[﴾2x+1﴿^2+1]>0

23 tháng 6 2017

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự

30 tháng 6 2017

B=(x-2)(x-4)+3=x^2-6x+9=(x-3)^2>=0

=>(x-2)(x-4)+3 luôn dương với mọi x

C=(x^2+2x+1)+(4y^2-4xy+x^2)+4

= (x+1)^2+(2y-x)^2+4

ta có : (x+1)^2+(2y-x)^2 >=0 với mọi x,y

=> (x+1)^2+(2y-x)^2+4 >=4 với mọi x,y

do đó C luôn dương với mọi x,y

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)