Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
A B C D E K N
XÉT TAM GIÁC ABD VÀ TAM GIÁC AED
BA=EA ( GT)
\(\widehat{BAD}=\widehat{EAD}\)( GT)
AD-CẠNH CHUNG
=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)
=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2 góc tương ứng )
b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)
cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)
mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)
=> \(\widehat{KBD}=\widehat{CED}\)
XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :
\(\widehat{KBD}=\widehat{CED}\)(CMT)
BD=ED ( CMT)
\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )
=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)
=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)
c)
vì \(BC//KN\)(GT)
=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )
MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA KD VÀ NC
=> KD//NC
=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)
XÉT TAM GIÁC KDN VÀ TAM GIÁC CND
\(\widehat{KDN}=\widehat{CND}\)( CMT)
DN-CẠNH CHUNG
\(\widehat{CDN}=\widehat{DNK}\)(CMT)
=> TAM GIÁC KDN = TAM GIÁC CND
=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)
LẠI CÓ DC= DK ( CMT )
=> KN=DK
XÉT TAM GIÁC KDN:KN=DK
=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)
ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!
Sorry, bạn tự vẽ hình nha!
a.
Tam giác ABC cân tại A có:
\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)
b.
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c.
Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:
AD = AE (tam giác ADE cân tại A)
A1 = A2 (tam giác ABD = tam giác ACE)
=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
hay H nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,H,M thẳng hàng
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>A,H,M thẳng hàng
b: BC=16cm nên BM=CM=8cm
=>AM=6cm
a. Nối AM
Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM.là.đường.cao\)
Mà H là giao của BD và CE
Vậy H là trực tâm của tam giác ABC
Vậy AH đi qua M
b. \(MC=16:2=8\left(cm\right)\)
Áp dụng định lý Pi - ta - go, suy ra:
\(AM^2+MC^2=AC^2\)
\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)