K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Bài 1:

Vì trong 3 số nguyên a, b, c có 1 số dương, 1 số âm và 1 số = 0

Ta xét đẳng thức:  \(\left|a\right|=b^2.\left(b-c\right)\)(1)

=> a, b, c là số nguyên khác nhau

Nếu a = 0 thì => |a| = 0

=> Đẳng thức (1) trỏ thành: \(b^2.\left(b-c\right)=0\)

Mặt khác: 

Do b khác c nên 

b2 = 0 => b = 0

          => a = b = 0 (ko thỏa mãn đk.)

Nếu b = 0 thì đẳng thức (1) trở thành: 

|a| = 0 . (0 - c) 

|a| = 0 (ko thỏa mãn (a khác b))

Nếu c = 0 thì đẳng thức (1) trở thành:

|a| = b. b

|a| = b3

Do vì |a| > 0 (a khác 0)

=> b3 > 0

=> b > 0 (3 số lẻ)

=> a < 0

=> a là số dương, b là số âm, c là số 0

Bài 2:

\(n^2-3n^2-36< 0\)

\(\Leftrightarrow-2n^2-36< 0\)

\(\Leftrightarrow-2n^2< 36\)

\(\Leftrightarrow n^2>-18\)

\(\Rightarrow n^2-3n^2-36< 0\)với mọi số tự nhiên

9 tháng 4 2018

2/ \(A=\frac{\left(1-x\right)^4}{-x}\)

a) Nếu A là số dương

=> \(\frac{\left(1-x\right)^4}{-x}>0\)

=> \(\hept{\begin{cases}\left(1-x\right)^4>0\\-x>0\end{cases}}\)=> x < 0

Vậy nếu x < 0 thì A > 0

b) Nếu A là số âm

=> \(\frac{\left(1-x\right)^4}{-x}< 0\)

=> \(\orbr{\begin{cases}\left(1-x\right)^4< 0\left(1\right)\\-x< 0\left(2\right)\end{cases}}\)

Mà \(\left(1-x\right)^4\ge0\) với mọi giá trị của x

=> Không xảy ra (1) => -x < 0 => x > 0

Vậy nếu x > 0 thì A < 0.

c) Nếu A = 0

=> \(\frac{\left(1-x\right)^4}{-x}=0\)

=> (1 - x)4 = 0

=> 1 - x = 0

=> x = 1

Vậy nếu x = 1 thì A = 0.

15 tháng 2 2020

Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃

a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu

Mà 3 > 0 => x - 1 > 0 => x > 1

b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu

Mà 5 > 0 => x - 2 < 0 => x < 2

*tk giúp mình nhé!! 😊*

15 tháng 2 2020

a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3

 Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)

b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5

Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)

c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu

\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)

\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)

d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu

\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )

\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)

25 tháng 4 2019

Em chung họ nguyển với anh em xin được làm quen với anh NGUYỄN THÀNH NAM

19 tháng 3 2020

câu trả lời chả liên quan gì đến câu hỏi cả=_=

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào...
Đọc tiếp

1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.

2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)


3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào bằng 0?

4) Tìm hai số x và y sao cho x + y = xy = x : y (y khác 0).

5) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: a2 + a - p = 0

6) Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA : MB : MC = 1:2:3. Tính số đo góc AMB ?

7) Tìm x,y biết: \(\frac{6}{\left(x-1\right)^2+2}=|y-1|+|y-2|+|y-3|+1\)

8) Cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
                So sánh M với \(\frac{1}{12}\)
9) Cho các số nguyên dương a,b,c,d,e thỏa mãn: a2 + b2 + c2 + d2 + e2 chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số.

10) Cho biểu thức: A = \(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
                       Tính giá trị của biểu thức B = \(4|A|+\frac{1}{3^{100}}\)

9) Cho tam giác ABC có góc A bằng \(^{90^o}\). Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BC + DE.

10) Tam giác ABC cân ở B có góc ABC = \(80^o\). I là một điểm nằm trong tam giác, biết góc IAC = \(10^o\)và góc ICA = \(30^o\). Tính góc AIB = ?

 

9
10 tháng 2 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Thay vào M ta có 

\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

P/s : hỏi từng câu thôi 

10 tháng 2 2019

Tại bận -.-

14 tháng 7 2019

Làm vô đây đài nhưng làm trog giấy ngắn lắm

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm

Tk mk nha