Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức đã cho là A.
Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)
= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))
Rút gọn triệt tiêu ta được 2A=3^64 - 1
=> A = (3^64 - 1)/2
số bé là : (80 - 14 ):2 =33
số lớn là :80 -33 =47
đs :..........
a: Ta có: \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)
\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)
\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)
b: Ta có: \(\left(x-3\right)^2-16\)
\(=\left(x-3-4\right)\left(x-3+4\right)\)
\(=\left(x+1\right)\left(x-7\right)\)
c: \(y^2+16y+64=\left(y+8\right)^2\)
Ta có : \(\frac{3n^3+10n^2-5}{3n+1}=n^2+3n-\frac{6}{3n+1}\)
Để \(3n^3+10n^2-5⋮3n+1\) \(\Leftrightarrow6⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n=\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
\(\Rightarrow n=\left\{-\frac{7}{3};-\frac{4}{3};-1;-\frac{2}{3};0;\frac{1}{3};\frac{2}{3};\frac{5}{3}\right\}\)
Mà n là số nguyên nên \(n=\left\{-1;0\right\}\)
Gọi 3 số tự nhiên cần tìm là: u - 1; u; u + 1
Theo đề bài, ta có:
u(u - 1) + u(u + 1) + (u - 1)(u + 1) = 74
<=> u^2 - u + u^2 + u + u^2 - 1 = 74
<=> 3u^2 - 1 = 74
<=> 3u^2 = 74 + 1
<=> 3u^2 = 75
<=> u^2 = 25
<=> u = 5
Vậy: 3 số đó là: 4, 5, 6
dưới mẫu nè: (2+1)(2^2+1)(2*4+1)(2*8+1)(2*16+1)=(2*4-1)(2*4+1)(2*8+1)(2*16+1)(*vì 2+1=2*2-1)
cứ như thế thì được: 2*32-1
Ta có : \(\frac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{\left(2^4\right)^8-1}{\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{2^{32}-1}=1\)
\(16+64+256+1024+...+16384+65536\)
\(=4^2+4^3+4^4+....+4^7+4^8\)
Đặt : \(A=4^2+4^3+4^4+....+4^7+4^8\)
\(\Rightarrow4A=4^3+4^4+4^5+...+4^8+4^9\)
\(\Rightarrow4A-A=\left(4^3+4^4+4^5+...+4^8+4^9\right)-\left(4^2+4^3+4^4+...+4^7+4^8\right)\)
\(\Rightarrow3A=4^9-4^2\)
\(\Rightarrow A=\frac{4^9-4^2}{3}=87376\)
Vậy : \(16+64+256+1024+...+16384+65536=87376\)
Thank you