Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
Xét hạng tử: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)
Thay \(xy+yz+zx=1\); ta có:
\(x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)^2\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tượng tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=xy+yz;z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=xz+yz\)
Do đó: \(A=2\left(xy+yz+zx\right)=2.1=2\)
ĐS:...
Bài 1: Áp dụng BĐT AM-GM ta có:
\(1+x\ge2\sqrt{x}\)
\(x+y\ge2\sqrt{xy}\)
\(y+1\ge2\sqrt{y}\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)
\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)
Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)
Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên
\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)
\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)
\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)
\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)
\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)
\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
Lời giải:
PT $(1)$ tương đương với:
$x+2\sqrt{x}+1=y+z+2\sqrt{yz}+2\sqrt{y}+2\sqrt{z}+1$
$\Leftrightarrow (\sqrt{x}+1)^2=(\sqrt{y}+\sqrt{z}+1)^2$
\(\left[\begin{matrix} \sqrt{x}=\sqrt{y}+\sqrt{z}\\ \sqrt{x}=-(\sqrt{y}+\sqrt{z})\end{matrix}\right.\)
Nếu $\sqrt{x}=-(\sqrt{y}+\sqrt{z})$
$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}=0\Rightarrow x=y=z=0$ (không thỏa mãn PT $(2)$)
Nếu $\sqrt{x}=\sqrt{y}+\sqrt{z}$
$\Rightarrow 3\sqrt{yz}=(\sqrt{y}+\sqrt{z})^2-\sqrt{3z}+1$
$\Leftrightarrow \sqrt{yz}=y+z-\sqrt{3z}+1$
$\Leftrightarrow 4y+4z-4\sqrt{yz}-4\sqrt{3z}+4=0$
$\Leftrightarrow (2\sqrt{y}-\sqrt{z})^2+(\sqrt{3z}-2)^2=0$
$\Rightarrow (2\sqrt{y}-\sqrt{z})^2=(\sqrt{3z}-2)^2=0$
$\Rightarrow z=\frac{4}{3}; y=\frac{1}{3}; x=3$
Bài 1:
$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$
$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$
$\Leftrightarrow a^3=110+3a$
$\Leftrightarrow a^3-3a-110=0$
$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$
$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$
$\Leftrightarrow (a-5)(a^2+5a+22)=0$
Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$
Vậy........
$a=
Bài 2:
Bạn xem tại đây:
Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến
Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS