Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)
b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)
c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)
e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)
a) A = 2 + 4 + 6 + 8 + ... + 1000
Ta có : A = 2 + 4 + 6 + 8 + ... + 1000 ( có 500 số )
= (1000 + 2) . 500 : 2 = 250500
c) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(\left(x\cdot2,4-4,2\right)\div x=1\)
\(\Rightarrow x\cdot2,4-4,2=x\)
\(\Rightarrow x\cdot2,4=x+4,2\)
\(\Rightarrow\frac{12x}{5}=\frac{5x+21}{5}\)
\(\Rightarrow12x=5x+21\)
\(\Rightarrow12x-5x=21\)
\(\Rightarrow7x=21\Rightarrow x=\frac{21}{7}=3\)
Vậy x = 3
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{x\left(x+2\right)}\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\cdot\frac{x+1}{x+2}\)
\(=\frac{x+1}{2x+2}\)
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)
\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)
\(\Rightarrow x=\frac{1.9}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
Vậy x = \(\frac{9}{5}\)
b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)
\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)
\(\Rightarrow x-2=\frac{5}{4}\)
\(\Rightarrow x=\frac{5}{4}+2\)
\(\Rightarrow x=\frac{13}{4}\)
Vậy x = \(\frac{13}{4}\)
_Chúc bạn học tốt_
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
ta có:
1-1/2+1/2-1/3+1/3-1/4+....+1/x -1/x+1 =499/500
1-1/x+1 =499/500
1/x+1 =1/500
x+1=500
x=499
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{X\times\left(X+1\right)}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{X}-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow1-\frac{1}{X+1}=\frac{499}{500}\)
\(\Leftrightarrow\frac{1}{X+1}=\frac{1}{500}\)
\(\Leftrightarrow X+1=500\)
\(\Leftrightarrow X=499\)
a) 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/x.(x+1) = 499/500
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/x - 1/x+1 = 499/500
1 - 1/x+1 = 499/500
1/x+1 = 1 - 499/500
1/x+1 = 1/500
x + 1 = 500
x = 500 - 1
x = 499
b) 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/x.(x+2) = 20/41
1/2 . [ 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) ] = 20/41
1/2 . [ 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 ] = 20/41
1/2 . [ 1 - 1/x+2 ) = 20/41
1 - 1/x+2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1 - 40/41
1/x+2 = 1/41
x + 2 = 41
x = 41 - 2
x = 39