K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

Bài 2 :

a) Sửa đề :

 \(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(A=\sqrt{3}-1-\sqrt{3}\)

\(A=-1\)

b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}+1-\sqrt{2}+1\)

\(B=2\)

c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+2+\sqrt{3}\)

\(C=4\)

d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(D=4+\sqrt{7}-\sqrt{7}\)

\(D=4\)

28 tháng 7 2020

Bài 1 :

a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)

TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)

Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)

b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa

\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)

TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)

TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

21 tháng 8 2017

Bài 1 :

a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)

= \(2\left|a-3\right|+2\left|a+2\right|\)

\(=2.\left(-a+3\right)+2\left(-a-2\right)\)

b) có sai đề ko ?

c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)

22 tháng 8 2017

tksa @Azue

28 tháng 5 2019

Bài 1 :

a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)

b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)

Bài 2 :

a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)

b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)

c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)

Bài 3 :

a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)

= \(\sqrt{5}-2-\sqrt{5}\)

= -2 = VP

b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)

VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)

= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)

= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)

=\(\sqrt{7}+4-\sqrt{7}\)

= 4 =VP

c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)

VT = \(16-8\sqrt{7}+7\)

= 23 - \(8\sqrt{7}\) = VP

Bài 4:

a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

Tương tự

Bài 5 :

a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)

=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1

=> x+3 = 3x-1

+) x+3 =3x-1 => x= 2

+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)

b)+c) Tương tự

8 tháng 8 2018

Bài 1:

a, (Xin được sửa đề bài) \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}\)

\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}\)

\(=\sqrt{x-3}-1-\sqrt{x-3}+2=1\)

b, \(D=\sqrt{m^2}-\sqrt{m^2-10m+25}\)

\(=m-\sqrt{\left(m-5\right)^2}\)

\(=m-m+5=5\)

Bài 2:

a, \(VT=\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x-2+2\sqrt{x-2}+1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}+1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(x-3\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x}+\sqrt{3}=VP\)

b, \(VT=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a+1-2\sqrt{a}}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\left(\frac{\sqrt{a}-1+\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=VP\)