Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Mình chỉ có thể giải được từng ấy thôi.
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)
Chữ số tận cùng là 6