K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

6 tháng 4 2017

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

6 tháng 4 2017

Mà bài này hình như học ở lớp 7 rồi!lolang

9 tháng 2 2020

Ta có : \(x^2+3y^2=4xy\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)

Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)

Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)

9 tháng 2 2020

Ta có:

\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)

TH1: x=3y

\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)

TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)

24 tháng 3 2020
Giúp mình với ạ,mình đang cần.
17 tháng 10 2021

làm ơn giúp e vs

17 tháng 10 2021

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

7 tháng 7 2018

Biểu thức B bạn áp dụng hằng đẳng thức số 6 nhé, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Trong đó a = x, b=3y

7 tháng 7 2018

a ) 

Ta có : 

\(A=\frac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\frac{1}{2}x^2y^2\left[\left(2x\right)^2-y^2\right]\)

Thay x = 1 ; y = \(\frac{1}{2}\)vào A , ta được : 

\(A=\frac{1}{2}1^2\left(\frac{1}{2}\right)^2\left[2^2-\left(\frac{1}{2}\right)^2\right]\)

\(\Rightarrow A=\frac{1}{2}.\frac{1}{4}.\frac{15}{4}\)

\(\Rightarrow A=\frac{15}{32}\)

Vậy \(A=\frac{15}{32}\)

b ) 

Ta có : 

\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+\left(3y\right)^3=x^3+27y^3\)

Thay x = 1/2 ; y = 1!/2 = 1/2 , ta được : 

\(\left(\frac{1}{2}\right)^3+27\left(\frac{1}{2}\right)^3\)

\(=\frac{1}{8}+27.\frac{1}{8}\)

\(=\frac{1}{8}.28\)

\(=\frac{7}{2}\)

Vậy \(B=\frac{7}{2}\)