Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABC và tam giác AED ta có:
AC=AD (gt)
Góc BAC=góc EAD (đđ)
AB=AE(gt)
Do đó tam giác ABC=tam giác AED (c_g_c)
a: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>\(\widehat{BAM}=\widehat{BDM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BDM}=90^0\)
b: Ta có; ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại M có
MA=MD
AE=DC
Do đó: ΔMAE=ΔMDC
=>\(\widehat{AME}=\widehat{DMC}\)
mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{EMC}=180^0\)
=>\(\widehat{DME}=180^0\)
=>D,M,E thẳng hàng
b) Vì AC=2AB
AB=BD
=>AC=AD
Xét tam giác ACE và tam giác ADE có:
AC=AD ( chứng minh trên )
^CAE=^EAD ( tính chất phân giác )
AE chung
=> tam giác ACE = tam giác ADE ( c.g.c )
=> ^CEA=^AED ( 2 góc tương ứng )
Mà ^CEA kề bù ^AED
=> ^CEA=^AED=90°
=> AE vuông góc CD
AI và AE là 2 tia trùng nhau
=> AI vuông góc CD
Vì AI vuông góc BM
Mà AI vuông góc CD
<=> BM // CD
Chúc bạn học tốt!
Vì mình không tìm được cách gõ góc nên kí hiệu ^ là góc nhé! Mong bạn thông cảm