Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2/a
Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)
\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)
\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)
\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)
Bài 2/c
Có a = 2k ; b = 3k ; c = 5k
=> 2 (a - b) (b - c) = a2
=> 2 (2k - 3k) (3k - 5k) = (2k)2
=> 2 (-1)k . (-2)k = 4k2
=> 4k2 = 4k2 (đpcm)
Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))
Chúc bạn học tốt =))
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
a) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thay \(x=2k;=3k;z=5k\) vào \(xyz=810\), có:
\(2k.3k.5k=810\\ \Leftrightarrow30k^3=810\\ \Leftrightarrow k^3=27\\ \Leftrightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy...
Để mình làm nốt câu b) nha.
b) Ta có:
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}.\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}.\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}.\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) và \(x^2+y^2+z^2=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=4\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\\\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=9\Rightarrow\left[{}\begin{matrix}z=3\\z=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right).\)
Chúc bạn học tốt
x/2=y/3=z/5=k
Suy ra:x=2k;y=3k;z=5k (1)
có xyz=810.thay (1) vào biểu thức ta có
2k*3k*5k=810
k^3*(2*3*5)=810
k^3*30=810
k^3=27
Suy ra : k=3
x/2=3 thì x=6
y/3=3 thì y=9
z/5=3 thì z=15
CHÚC BẠN HỌC TỐT
Mk sửa lại đề nhá : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Đặt t = \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Khi đó \(t^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
Suy ra : t = \(\frac{1}{2};-\frac{1}{2}\)
+ t = \(\frac{1}{2}\) thì x = \(\frac{1}{2}\).2 = 1
y = \(\frac{1}{2}\).4 = 2
z = \(\frac{1}{2}\).6 = 3
+ t = \(-\frac{1}{2}\) thì x = \(-\frac{1}{2}\). 2 = -1
y \(=-\frac{1}{2}.4=-2\)
z \(=-\frac{1}{2}.6=-3\)