Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
Lời giải:
a)
Từ ĐKĐB dễ thấy các tứ giác $ABID, ABCK$ là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI; AB=CK\Rightarrow DI=CK\)
\(\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
$AB\parallel DK\Rightarrow \frac{DE}{EB}=\frac{DK}{AB}$
$AB\parallel CI\Rightarrow \frac{IF}{FB}=\frac{CI}{AB}$
Mà $CI=DK$ (cmt)
$\Rightarrow \frac{DE}{EB}=\frac{IF}{FB}$. Theo định lý Ta-let đảo suy ra $EF\parallel CD$
b)
Từ các đường thẳng song song, và $DI=CK=AB$, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CD-CK}{AB}\)
\(=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\) (đpcm)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Gcaothu56677 - Toán lớp 8 | Học trực tuyến
Giúp mình với, mình cần gấp !!!!!!!!!!!! Thanks các bạn nhìu!