K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}=>\left(\frac{a+b+c}{b+c+d}\right)^3\)    (3)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=>\frac{b}{c}=\frac{c}{d}=>\frac{d}{c}=\frac{c}{b}\)(1)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=>\frac{a}{b}=\frac{d}{c}=\frac{c}{d}\)từ (1)

=>\(\frac{a}{d}=\frac{b}{c}=\frac{c}{d}\)(2)

Từ (2) và (3) =>\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)(ĐPCM)

21 tháng 9 2016

25361

11 tháng 2 2020

Áp dụng tính chất.......

a/b=b/c=c/d=a+b+c/b+c+d suy ra (a/b)^3=(b/c)^3=(c/d)^3=(a+b+c)^3/(b+c+d)^3(1)

a/b= b/c=c/dsuy ra a^3/b^3=b^3/c^3=c^3/d^3(2)

Áp dụng tính chất .....

a^3/b^3=b^3/c^3=c^3/d^3=a^3+b^3+c^3/b^3+c^3+d^3 (3)

Từ 1,2 và 3 suy ra :a^3+b^3+c^3/b^3+c^3+d^3=(a+b+c)^3/(b+c+d)^3

9 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)

Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)

Từ (1) và (2) => ĐPCM

b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => ĐPCM

12 tháng 11 2018

đi mà làm

12 tháng 8 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)

Mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

=>\(\left(\frac{a+b-c}{b+c-d}\right)^3=\frac{a}{d}\Rightarrow\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\Rightarrow\frac{\left(a+b-c\right)^3}{a}=\frac{\left(b+c-d\right)^3}{d}\) (đpcm)

18 tháng 1 2017

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow k^3=\left(\frac{a+b+c}{b+c+d}\right)^3\left(1\right)\)

\(k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

18 tháng 1 2017

Ta có:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}\)3=\(\frac{b}{c}\)3=\(\frac{c}{d}\)3=\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\left(\frac{a+b+c}{b+c+d^{ }}\right)\)3

\(\Rightarrow\)\(\left(\frac{a+b+c}{b+c+d^{ }}\right)\)3=\(\frac{a}{b}\).\(\frac{b}{c}\).\(\frac{c}{d}\)=\(\frac{a}{d}\)

\(\Rightarrow\)đpcm

13 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}\)

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

30 tháng 6 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Do đó : 

\(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\)\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) \(\left(1\right)\)

Lại có : 

\(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) \((\) cùng bằng \(\left(\frac{a}{b}\right)^3\) \()\)

Vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) ( điều phải chứng minh ) 

Chúc bạn học tốt ~ 

30 tháng 6 2018

\(\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{a+b+c}{b+c+d}. \frac{a}{b} . \frac{b}{c} . \frac{c}{d} = \frac{a+b+c}{b+c+d} + \frac{a+b+c}{b+c+d} + \frac{a+b+c}{b+c+d}. \Leftrightarrow \frac{a}{d} = (\frac{a+b+c}{b+c+d} )^3 \RightarrowĐPCM\)

theo dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)