K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

a) Ta có: \(cos\alpha=\dfrac{12}{13}\)

Mà: \(sin^2\alpha+cos^2a=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)

\(\Rightarrow sin\alpha=\dfrac{5}{13}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)

b) Ta có: \(cos\alpha=\dfrac{3}{5}\)

Mà: \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)

2:

a: BC=căn 16^2+12^2=20cm

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=3/5

cos B=sin C=AB/BC=4/5

tan B=cot C=3/5:4/5=3/4

cot B=tan C=1:3/4=4/3

b: AH=căn 13^2-5^2=12cm

Xét ΔAHC vuông tại H có

sin C=AH/AC=12/13

=>cos B=12/13

cos C=HC/AC=5/13

=>sin B=5/13

tan C=12/13:5/13=12/5

=>cot B=12/5

tan B=cot C=1:12/5=5/12

c: BC=3+4=7cm

AB=căn BH*BC=2*căn 7(cm)

AC=căn CH*BC=căn 21(cm)

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=căn 21/7

sin C=cos B=AB/BC=2/căn 7

tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21

cot B=tan C=1/căn 21/2=2/căn 21

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)

17 tháng 7 2018

A B C H

a)  Áp dụng định lý Pytago ta có:

            \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)

\(\Leftrightarrow\)\(BC=13\)

b)  Áp dụng hệ thức lượng ta có:

      \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)

        \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)

c)    \(sinB=\frac{AC}{BC}=\frac{12}{13}\)             \(tanB=\frac{AC}{AB}=\frac{12}{5}\)

      \(cosB=\frac{AB}{BC}=\frac{5}{13}\)               \(cotB=\frac{AB}{AC}=\frac{5}{12}\)

a: AH=căn 13^2-5^2=12cm

CH=12^2/5=28,8cm

BC=28,8+5=33,8cm

AC=căn 28,8*33,8=31,2cm

b: AH=căn 3*4=2căn 3(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=2căn 7(cm)

c: CH=4^2/3=16/3cm

AB=căn 4^2+3^2=5cm

AC=căn 16/3*25/3=20/3(cm)

17 tháng 7 2018

A B C H

a)  Áp dụng định lý Pytago ta có:   

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)

\(\Leftrightarrow\)\(BC=13\)

b)  ÁP dụng hệ thức lượng ta có: 

     \(AB.AC=AH.BC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)

    \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)

c)  \(sinB=\frac{AC}{BC}=\frac{12}{13}\)           \(cos=\frac{AB}{BC}=\frac{5}{13}\)

     \(tanB=\frac{AC}{AB}=\frac{12}{5}\)          \(cotB=\frac{AB}{AC}=\frac{5}{12}\)

a: BC=20cm

\(\sin B=\cos C=\dfrac{AC}{BC}=\dfrac{3}{5}\)

\(\sin C=\cos B=\dfrac{AB}{BC}=\dfrac{4}{5}\)

\(\tan B=\cot C=\dfrac{3}{4}\)

\(\cot B=\tan C=\dfrac{4}{3}\)

b: \(AC=\sqrt{6^2-4^2}=2\sqrt{5}\left(cm\right)\)

\(\sin B=\cos C=\dfrac{AC}{BC}=\dfrac{\sqrt{5}}{3}\)

\(\sin C=\cos B=\dfrac{AB}{BC}=\dfrac{2}{3}\)

\(\tan B=\cot C=\dfrac{\sqrt{5}}{2}\)

\(\tan C=\cot B=\dfrac{2\sqrt{5}}{5}\)

c: \(AH=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(\sin C=\cos B=\dfrac{AH}{AC}=\dfrac{12}{13}\)

\(\sin B=\cos C=\dfrac{5}{13}\)

\(\tan C=\cot B=\dfrac{12}{5}\)

\(\cot C=\tan B=\dfrac{5}{12}\)