Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
p nguyên tố>5 ==>p lẻ, p không chia hết cho 3 => p^4 chia 3 dư 1 => p-1 chia hết cho 3
p nguyên tố .5 => p lẻ => p^4-1 chia hết cho 16
p nguyên tố .5 => p có tận cùng 1 3 7 9 => p^4 có tận cùng 1 => p^4-1 chia hết cho 10
p chia hết cho 3,10,16 => chia hết cho 240(240 là bội chung nhỏ nhất của 3,10,16)
Mình sắp ngủ rồi nên giúp bạn câu này, kết bạn nha!
Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240
- Do p>5 nên p là số lẻ
+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)
=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8
+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2
p > 5 nên p có dạng
+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p4 - 1 chia hết cho 3
..............................
Tương tự ta cũng có q4 - 1 chia hết cho 240 .
Vậy (p4-1)-(q4-1) = p4 - q4 cho 240
Ta có : a4 - b4 = ( a4 - 1 ) - ( b4 - 1 )
240 = 2 . 3 . 5 . 8
do đó : ta phải chứng minh : ( a4 - 1 ) \(⋮\)240 và ( b4 - 1 ) \(⋮\)240
Lại có : ( a4 - 1 ) = ( a - 1 ) ( a + 1 ) ( a2 + 1 )
Vì a là số nguyên tố > 5 nên a là số lẻ
=> ( a - 1 ) ( a + 1 ) là tích 2 số chẵn liên tiếp nên \(⋮\)8 ( 1 )
do a > 5 nên :
a = 3k + 1
=> a - 1 = 3k \(⋮\)3
a = 3k + 2 ( 2 )
=> a + 1 = 3k \(⋮\)3
mặt khác vì a là số lẻ => a2 là số lẻ
=> a2 +1 là số chẵn
nên a2 + 1 \(⋮\)2 ( 3 )
a có các dạng :
a = 5k + 1 => a - 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 2 => a2 + 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 3 => a2 + 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 4 => a - 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k mà p là số nguyên tố nên k = 1
=> a = 5 ( ko thỏa mãn )
=> a4 - 1 \(⋮\)5 ( 4 )
Từ ( 1 ) , ( 2 ) , ( 3 ) và ( 4 ) => a4 - 1 \(⋮\)240
tương tự , ta cũng có b4 \(⋮\)240
bài này trong đề thi học sinh giỏi của em họ mình có nè