Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
chúc bạn học tốt :)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta có : a4 - b4 = ( a4 - 1 ) - ( b4 - 1 )
240 = 2 . 3 . 5 . 8
do đó : ta phải chứng minh : ( a4 - 1 ) \(⋮\)240 và ( b4 - 1 ) \(⋮\)240
Lại có : ( a4 - 1 ) = ( a - 1 ) ( a + 1 ) ( a2 + 1 )
Vì a là số nguyên tố > 5 nên a là số lẻ
=> ( a - 1 ) ( a + 1 ) là tích 2 số chẵn liên tiếp nên \(⋮\)8 ( 1 )
do a > 5 nên :
a = 3k + 1
=> a - 1 = 3k \(⋮\)3
a = 3k + 2 ( 2 )
=> a + 1 = 3k \(⋮\)3
mặt khác vì a là số lẻ => a2 là số lẻ
=> a2 +1 là số chẵn
nên a2 + 1 \(⋮\)2 ( 3 )
a có các dạng :
a = 5k + 1 => a - 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 2 => a2 + 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 3 => a2 + 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k + 4 => a - 1 \(⋮\)5 => a4 - 1 \(⋮\)5
a = 5k mà p là số nguyên tố nên k = 1
=> a = 5 ( ko thỏa mãn )
=> a4 - 1 \(⋮\)5 ( 4 )
Từ ( 1 ) , ( 2 ) , ( 3 ) và ( 4 ) => a4 - 1 \(⋮\)240
tương tự , ta cũng có b4 \(⋮\)240
bài này trong đề thi học sinh giỏi của em họ mình có nè