K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
a.

a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$

$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$

$\Leftrightarrow 3x+1=5x-3$

$\Leftrightarrow 4=2x$

$\Leftrightarrow x=2$

b.

$(2x-1)(x+3)-(x-2)(x+3)=3x+1$

$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$

$\Leftrightarrow x^2+5x+1=3x+1$

$\Leftrightarrow x^2+2x=0$

$\Leftrightarrow x(x+2)=0$

$\Leftrightarrow x=0$ hoặc $x=-2$

c.

$x^2(x-1)-x(x-1)(x+1)=0$

$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$

$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$

$\Leftrightarrow (x-1)(-x)=0$

$\Leftrightarrow x-1=0$ hoặc $-x=0$

$\Leftrightarrow x=1$ hoặc $x=0$

d.

$4x(x-5)-(2x-3)(2x+3)=9$

$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$

$\Leftrightarrow -20x=0$

$\Leftrightarrow x=0$

a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)

\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)

\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)

\(\Leftrightarrow4x^2-20x-4x^2+9=9\)

hay x=0

20 tháng 7 2019

Phần b) = 3

20 tháng 7 2019

sao bạn ko làm hẳn ra cho bạn ý

3 tháng 5 2017

c. x^2-5x+6=0

<=> x^2-5x=-6

<=> -4x=-6

<=> x=-6/-4

vậy tập nghiệm của pt là s={-6/-4}

3 tháng 5 2017

      c.   x^2-5x +6 = 0

<=> x^2 - 5x = -6

<=> - 4x = -6

<=> x= -6/-4

3 tháng 5 2017

 Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm

A)  2x2(x+3) - x(x+3) = 0  <=> x(x - 3)(2x-1)=0

B)  (2x+5)2 - (x+2)2=0  <=>  (x+3)(3x+7)=0

C)  (x2-2x) - (3x-6)=0  <=> (x-2)(x-3)=0

D)  (2x-7)(2x-7-6x+18)=0   <=> (2x-7)(-4x+11)=0

E)  (x-2)(x+1) - (x-2)(x+2)=0   <=>  (x-2)*(-1)=0   <=> x-2=0

G)  (2x-3)(2x+2-5x)=0  <=> (2x-3)(-3x+2)=0

H)  (1-x)(5x+3+3x-7)=0     <=>  (1-x)(8x-4)=0

F)   (x+6)*3x=0

I)  (x-3)(4x-1-5x-2)=0  <=>  (x-3)(-x-3)=0

K)   (x+4)(5x+8)=0

H)  (x+3)(4x-9)=0

5 tháng 9 2019

a) 3x(4x - 3) - 2x(5 - 6x) = 0

=> 6x2 - 9x - 10x + 12x2 = 0

=> 18x2 - 19x = 0

=> x(18x - 19) = 0

=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)

b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0

=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0

=> 8x - 15 = 0

=> 8x = 15

=> x = 15 : 8 = 15/8

c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)

=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x

=> 4x - x2 - 5x2 - 15x = 0

=> -6x2 - 11x = 0

=> -x(6x - 11) = 0

=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)

5 tháng 9 2019

a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)

b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)

11 tháng 11 2020

a)(x+2).(x+3)-(x-2).(x+5)=10

  ( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10

 x^2 +3x+2x+6-x^2 -5x+2x+10-10=0

 2x+6=0

2x=-6

x=-3

21 tháng 1 2018

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)

\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)

\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)

\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)

\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)

\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-3\right\}\)

\(h,2x\left(x-1\right)=x^2-1\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(S=\left\{1\right\}\)

5 tháng 3 2020

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)

\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)

\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)

5 tháng 3 2020

\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)

\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)

\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)

a) Ta có: 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)

b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

hay \(x=\frac{15}{8}\)

Vậy: \(x=\frac{15}{8}\)

c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)

\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)

\(\Leftrightarrow-6x^2-11x=0\)

\(\Leftrightarrow6x^2+11x=0\)

\(\Leftrightarrow x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)

d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)

\(\Leftrightarrow14x^2+18=0\)

\(\Leftrightarrow14x^2=-18\)

\(14x^2\ge0\forall x\)

nên \(x\in\varnothing\)

Vậy: \(x\in\varnothing\)