Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~
Vì phân số cần tìm bằng phân số \(\frac{5}{7}\) nên phân số đó có dạng \(\frac{5a}{7a}\)
Vì tống của cả tử và mẫu của phân số đó là 4812 => 5a + 7a = 4812
<=> 12a = 4812 => a = 4812 : 12 = 401
Vậy phân số \(\frac{5.401}{7.401}=\frac{2005}{2807}\)
Bài tập 1:
S=2/15+2/35+2/63+2/99+2/143
\(\Rightarrow\)S=2/3x5 +2/5x 7 +2/7x9 +2/9x11 +2/11x13
\(\Rightarrow\)S=1/3 -1/5 +1/5 - 1/7 +1/7 -1/9 +1/9 -1/11 +1/11 -1/13
\(\Rightarrow\)S=1/3 -1/13
\(\Rightarrow\)S=13/39 -3/39
\(\Rightarrow\)S=10/39
S=3/1.4 +3/4.7+3/7.11 ..........sai đề rồi
Bài 2
A=5/11.16+5/16.21+5/21.26+...+5/61.66
\(\Rightarrow\)A=1/11+1/16+1/16-1/21+1/21-1/26+....+1/61-1/66
\(\Rightarrow\)A=1/11-1/66
\(\Rightarrow\)A=6/66-1/66
\(\Rightarrow\)A=5/66
1) Khi bớt ở cả tử số và mẫu số của một phân số thì hiệu giữa mẫu số và tử số của phân số đó không thay đổi. Vậy hiệu giữa mẫu số và tử số là:
47 - 23 = 24
Coi tử số mới là 7 phần bằng nhau thì mẫu số mới là 13 phần như thế, hiệu là 24.
Hiệu số phần bằng nhau là:
13 - 7 = 6 (phần)
Giá trị 1 phần là:
24 : 6 = 4
Tử số mới là:
4 . 7 = 28
Số nguyên cần tìm là:
23 - 28 = -5
Đáp số: -5
56+%:3=5868%
bài 1
a) Với a là số nguyên thì phân số a/71 tối giản khi n không thuộc ước hoặc bội của 71
b) Với a là số nguyên thì phân số a/225 tối giản khi b không thuộc ước hoặc bội của 225