K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.16/4 . x = 16/2

x = 16/2 : 16/4

x = 16/2 . 4/16

x = 1/2.

b, b.2xy3+ 4x2y+8xy3−1x2y

= 2xy3 + 8xy3 + 4x2y - 1x2y

= ( 2 + 8 )xy3 + ( 4 - 1 )x2y

= 10xy3 + 3x2y.

 

a: x=16/2:16/4=2

b: \(=10xy^3+3x^2y\)

c: \(15x-14x+3xyz^3+2xyz^3-4xy^2+xy^2\)

\(=x+5xyz^3-3xy^2\)

a: \(=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(-8x^3y^2+11x^3y^2\right)\)

\(=3x^2y^3-5x^2+3x^3y^2\)

bậc là 5

b: \(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)

Bậc là 6

c: \(=5xy-2xy+4xy-y^2+3x-2y\)

\(=-y^2+3x-2y+7xy\)

Bậc là 2

23 tháng 3 2017

\(a.M+(5x^2-2xy)=6x^2+9xy-y^2 \)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M= \) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)



24 tháng 3 2017

a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)

=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)

M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy

M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)

M = 1x\(^2\) + 11xy - y\(^2\)

1.

a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)

\(\dfrac{1}{3}x^6y^5z\)

Deg=12

Mấy câu kia tương tự nha cố gắng lên!

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

25 tháng 2 2019

T giải thử thôi nhé :w

a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)

\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)

\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)

\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)

\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)

\(=-1.\frac{25x^3y^2}{8}\)

\(=-\frac{25x^3y^2}{8}\)

a, \(2x^2yz+4xy^2z-10x^2yz+xy^2z-2xyz\)

\(=2x^2y+\left(4xy^2z+xy^2z\right)-10x^2yz-2xyz\)

\(=2x^2y+5xy^2z-10x^2yz-2xyz\)

b, \(x^3-5xy+3x^3+xy-x^2+\frac{1}{2}-x^2\)

\(=\left(x^3+3x^3\right)+\left(-5xy+xy\right)+\left(-x^2-x^2\right)+\frac{1}{2}\)

\(=4x^3-4xy-2x^2+\frac{1}{2}\)

c, \(3x^2y^2z^2+x^2y^2z^2=4x^2y^2z^2\)

28 tháng 4 2020

Bài 1 :

a) 2x2yz + 4xy2z - 10x2yz + xy2z - 2xyz

= ( 2 - 10 )x2yz + ( 4 + 1 )xy2z - 2xyz

= -8x2yz + 5xy2z - 2xyz

b) 3x2y2z2 + x2y2z2 = ( 3 + 1 )x2y2z2 = 4x2y2z2

Bài 2.

a) 15x4 + 7x4 + ( -20x )x2 =  ( 15 + 7 )x4 - 20xx2 = 22x4 - 20x3

Thay x = -1 vào đa thức ta có :

22 . ( -1 )4 - 20 . ( -1 )3

= 22 . 1 - 20 . ( -1 )

= 22 - ( -20 )

= 22 + 20

= 42 

Vậy giá trị của đa thức = 42 khi x = -1

b) 23x3y3 + 17x3y3 + ( -50x3 )y3 = 23x3y3 + 17x3y3 - 50x3y3 = ( 23 + 17 - 50)x3y3 = -10x3y3

Thay x = 1 ; y = -1 vào đơn thức ta có :

-10 . 13 . ( -1 )3 

= -10 . 1 . ( -1 )

= 10

9 tháng 4 2017

A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2

= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)

= 3x2y2-5x2+3x3y2

Bậc của đa thức A: 5

Hệ số cao nhất: 3

B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)

=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3

Bậc của đa thức B: 6

Hệ số cao nhất : \(\dfrac{7}{3}\)