Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng
mình làm được câu a thôi. bạn có bấm đúng k để mình làm cho
thôi mình làm hết cho
a) xét hiệu ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
với n,b, thuộc N => b(b+n) luôn >0
với n >0 => nếu b>a => b-a>0 <=> n(b-a) >0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}>0\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
ngược lại nếu b<a => b-a<0 <=> n(b-a)<0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}<0\Leftrightarrow\frac{a+n}{b+n}<\frac{a}{b}\)
b) \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\); \(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
=> 10B>10A => B>A
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
#)Giải :
Bài 1 :
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow N< 1-\frac{1}{100}\)
\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow N< \frac{3}{4}\)
#~Will~be~Pens~#
Bài 1:
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{2}\)
\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Bài 2:
a) Để A là phân số \(\Leftrightarrow n-2\ne0\)
\(\Leftrightarrow n\ne2\)
Vậy \(n\ne2\)thì A là phân số .
b) Để A là số nguyên
\(\Leftrightarrow n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tự tìm n
Bài 3:
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow P< Q\)
a, Nếu\(\frac{a}{b}\)< 1 \(\Rightarrow\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu \(\frac{a}{b}\)=1\(\Rightarrow\frac{a}{b}\)=\(\frac{a+n}{b+n}\)
Nếu \(\frac{a}{b}\)>1\(\frac{ }{ }\Rightarrow\frac{a}{b}\)>\(\frac{a+n}{b+n}\)
b,Ta có:
A\(=\frac{10^{11}-1}{10^{12}-1}\)<1 ( Vì tử < mẫu)
\(\Rightarrow\)A=\(\frac{10^{11}-1}{10^{12}-1}\)< \(\frac{10^{11}-1+11}{10^{12}-1+11}\)\(=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}\)\(=\frac{10^{10}+1}{10^{11}+1}\)\(=\)B
Vậy A<B