Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :a/b=c/d
=>a/b+1=c/d+1
=>a/b+b/b=c/d+d/d
=>a+b/b=c+d/d
=>dpcm
ta có :a/b=c/d
=>a/b-1=c/d-1
=>a/b-b/b=c/d-d/d
=>a-b/b=c-d/d
=>dpcm
tick cho mik nha bạn !
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) b)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) c)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
--> \(\frac{b}{d}=\frac{a+b}{c+d}->\frac{a+b}{b}=\frac{c+d}{d}\) ->\(\frac{a-b}{c-d}=\frac{b}{d}->\frac{a-b}{b}=\frac{c-d}{d}\) -> \(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a+b}{a}=\frac{c+d}{c}\)
d)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) e) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) f) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
--> \(\frac{a-b}{c-d}=\frac{a}{c}->\frac{a-b}{a}=\frac{c-d}{c}\) -->\(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a}{a+b}=\frac{c}{c+d}\) -->\(\frac{a}{c}=\frac{a-b}{c-d}->\frac{a}{a-b}=\frac{c}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\)(\(b,d\ne0\))
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow2ad=2bc\)
\(\Leftrightarrow ad-bc=bc-ad\)
\(\Leftrightarrow ad-bc+ac-bd=bc-ad+ac-bd\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(\(a-b,c-d\ne0\))
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)