Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Rightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Rightarrow4x+\frac{15}{16}=1\)
\(\Rightarrow4x=1-\frac{15}{16}\)
\(\Rightarrow4x=\frac{1}{16}\)
\(\Rightarrow x=\frac{1}{16}:4\)
\(\Rightarrow x=\frac{1}{64}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(4x+\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=1\)
\(4x+\frac{15}{16}=1\)
\(4x=\frac{1}{16}\)
\(x=\frac{1}{64}\)
Vậy......
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
a) Ta có: \(-x+\frac{4}{7}=\frac{1}{3}\)
\(\Leftrightarrow-x=-\frac{5}{21}\)
\(\Rightarrow x=\frac{5}{21}\)
b) Ta có: \(x\div\left(-\frac{1}{3}\right)^2=-\frac{1}{3}\)
\(\Rightarrow x=\left(-\frac{1}{3}\right)^3=-\frac{1}{27}\)
c) \(\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{5}\right)^7\)
\(\Rightarrow x=\left(\frac{3}{5}\right)^2=\frac{9}{25}\)
\(a.-x+\frac{4}{7}=\frac{1}{3}\)
\(-x=\frac{1}{3}-\frac{4}{7} \)
\(-x=\frac{7}{21}-\frac{12}{21}\)
\(-x=\frac{-5}{21}\)
\(x=\frac{5}{21}\)
\(b.x:\left(\frac{-1}{3}\right)^2=\frac{-1}{3}\)
\(x=\frac{-1}{3}.\left(\frac{-1}{3}\right)^2\)
\(x=\frac{-1}{3}.\frac{-1}{3}.\frac{-1}{3}\)
\(x=\frac{-1}{27}\)
\(c.\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{5}\right)^7\)
\(x=\left(\frac{3}{5}\right)^7:\left(\frac{3}{5}\right)^5\)
\(x=\left(\frac{3}{5}\right)^2\)
\(x=\frac{3}{5}.\frac{3}{5}\)
\(x=\frac{9}{25}\)
Bài 1 :
\(\frac{4}{x}=\frac{x+1}{5}\)
\(\Rightarrow x\cdot\left(x+1\right)=4\cdot5\)
\(\Rightarrow x\cdot\left(x+1\right)=20\)
Vì \(x\cdot\left(x+1\right)\)là tích của sai số tự nhiên liên tiếp bằng 20
\(\Rightarrow4\cdot5=20\)
\(\Rightarrow x=4\)
Bài 2 :
\(\frac{7}{x-1}=\frac{x}{8}\)
\(\Rightarrow\left(x-1\right)\cdot x=7\cdot8\)
\(\Rightarrow\left(x-1\right)\cdot x=56\)
Vì \(\left(x-1\right)\cdot x\)là tích của hai số tự nhiên liên tiếp bằng 56
\(\Rightarrow7\cdot8=56\)
\(\Rightarrow x=7\)
1) \(\frac{4}{x}=\frac{x+1}{5}\)
\(\Rightarrow x.\left(x+1\right)=4.5\) ( x; x + 1 là 2 số tự nhiên liên tiếp)
=> x = 4
2) \(\frac{7}{x-1}=\frac{x}{8}\Rightarrow\left(x-1\right).x=7.8\) ( x-1;x là 2 số tự nhiên liên tiếp)
=> x = 8