Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(11x+11y+x^2+xy=\left(11x+11y\right)+\left(x^2+xy\right)=11\left(x+y\right)+x\left(x+y\right)=\left(x+y\right)\left(x+11\right)\)
b. \(255-4x^2-4xy-y^2=255-\left(4x^2+4xy+y^2\right)=255-\left(2x+y\right)^2=\left(15+2x+y\right)\left(15-2x-y\right)\)
Bài 2:
\(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(72-2\right)\left(102-2\right)=70.100=7000\) ( x+y=102, x-y=72 )
Bài 1:
\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)
Bài 2:
\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)
Bài 3:
\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)
a) 11x + 11y + x2 + xy
= 11.(x+y) + x.(x+y)
= (x+y).(11+x)
b) 255 + x2 - 4xy + y2
= 255 + 2xy + x2 -2xy + y2
= 255 + 2xy + (x-y)2
...
a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)
d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
a) Ta có: \(11x+11y+x^2+xy\)
\(=11\left(x+y\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(11+x\right)\)
b) Ta có: \(225-4x^2-4xy-y^2\)
\(=225-\left(4x^2+4xy+y^2\right)\)
\(=15^2-\left(2x+y\right)^2\)
\(=\left(15-2x-y\right)\left(15+2x+y\right)\)
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
B3) a) x(x-5)-4(x-5)=0
<=> (x-4)(x-5)=0
TH1 :x-4=0
<=.x=4
TH2 : x-5=0
<=>x=5
b) x(x-6)-7x-42=0
<=>x(x+6)-7(x+6)=0
<=>(x-7)(x+6)=0
th1;x-7=0
<=>x=7
th2; x+6=0
<=>x=-6
c)x^3-5x^2+x-5=0
<=> x(x^2+1)-5(x^2+1)=0
<=> (x-5)(x^2+1)=0
th1:x-5=0
<=>x=5
TH2 : x^2+1=0
<=> x^2=-1 ( vo li )
=> th2 ko tồn tại
nho thick nha
Bài 3
a, x(x-5)-4(x-5)=0
(x-4)(x-5)=0
=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
b,x(x+6)-7(x+6)=0
(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
c,x^2(x-5)+(x-5)=0
(x^2+1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)
Câu 1: (2x+y)(y-2x)+4x2=y2-4x2+4x2=y2
Với y=10 giá trị biểu thức trên là 102=100
Câu 2:
a. xy-11x=x.(y-11)
b. x2+4y2+4xy-16=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)