Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+16}{9}=\dfrac{y-25}{-16}=\dfrac{z+49}{25}\) (1)
Ta có: \(4x^3-3=29\)
\(\Rightarrow4x^3=32\Rightarrow x^3=8\)
\(\Rightarrow x=2\)
Thay \(x=2\) vào điều (1) ta có:
\(\dfrac{2+16}{9}=\dfrac{y-25}{-16}=\dfrac{z+49}{25}\)
\(\Rightarrow\dfrac{y-25}{-16}=\dfrac{z+49}{25}=\dfrac{18}{9}\)
\(\Rightarrow\dfrac{y-25}{-16}=\dfrac{z+49}{25}=2\)
\(\Rightarrow\left\{{}\begin{matrix}y-25=2.\left(-16\right)\\z+49=2.25\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y-25=-32\\z+49=50\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=-7\\z=1\end{matrix}\right.\)
Vậy giá trị của biểu thức \(A=x+2y+3z\) là:
\(A=2+2.\left(-7\right)+3.1=2-14+3=-9\)
Chúc bạn học tốt!!!
Ta có : \(4x^3-3=29\)
\(\Rightarrow4x^3=32\)
\(\Rightarrow x^3=8\)
\(\Rightarrow x=2\)
Thay x = 2 vào \(\dfrac{x+16}{9}=\dfrac{y-25}{-16}\) ta có :
\(\dfrac{2+16}{9}=\dfrac{y-25}{-16}\)
\(\Rightarrow2=\dfrac{y-25}{-16}\)
\(\Rightarrow y-25=-32\)
\(\Rightarrow y=-7\)
Thay \(y=-7\) vào \(\dfrac{y-25}{-16}=\dfrac{z+49}{25}\) ta có :
\(\dfrac{-7-25}{-16}=\dfrac{z+49}{25}\)
\(\Rightarrow2=\dfrac{z+49}{25}\)
\(\Rightarrow z+49=50\)
\(\Rightarrow z=1\)
Thay x = 2; y = -7; z = 1 vào biểu thức A ta có :
\(A=2+2.\left(-7\right)+3.1\)
\(A=-9\)
Vậy A = -9
\(4x^3-3=29\Rightarrow x^3=\dfrac{29+3}{4}=8\Rightarrow x=\sqrt[3]{8}=2\)
Thay số: \(\dfrac{x+16}{9}=\dfrac{2+16}{9}=2\)
Suy ra: \(y=\left(-16\right)\cdot2+25\Leftrightarrow y=-7\) và \(z=25\cdot2-49\Leftrightarrow z=1\)
\(A=x+2y+3z\Leftrightarrow2+\left(-14\right)+3=-9\)
\(4x^3-3=29\Rightarrow x^3=\dfrac{32}{4}=2^3\Rightarrow x=3\)
\(\dfrac{19}{9}=\dfrac{2y-2.25}{-32}=\dfrac{3z+49.3}{75}=\dfrac{2y+3z+49.3-25.2}{75-32}=\dfrac{2y+3z+97}{43}\)
\(\dfrac{\left(2y+3z+3\right)+94}{43}=\dfrac{19}{9}\) \(\Rightarrow\left(x+2y+3z\right)=\dfrac{43.19}{9}-94\)
\(4x^3-3=29\\ \Rightarrow4x^3=32\\ \Rightarrow x^3=8\\ \Rightarrow x=2\)
\(\dfrac{x+16}{9}=\dfrac{2+16}{9}=2\\\Rightarrow\dfrac{y-15}{-16}=\dfrac{z+49}{25}=2\\ \Rightarrow\left\{{}\begin{matrix}y-15=2.\left(-16\right)=-32\\z+49=2.25=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-17\\z=1\end{matrix}\right.\)
Mình sửa lại chút.
\(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left\{\dfrac{1}{97.95}+\dfrac{1}{95.93}\right\}-\left\{\dfrac{1}{5.3}+\dfrac{1}{3.1}\right\}\)
\(=\dfrac{1}{99.97}-\dfrac{1}{95}.\left\{\dfrac{1}{97}+\dfrac{1}{93}\right\}-\dfrac{1}{3}.\left\{\dfrac{1}{5}+\dfrac{1}{1}\right\}\)
\(=\dfrac{1}{99.97}-\dfrac{1}{95}.\dfrac{190}{97.93}-\dfrac{1}{3}.\dfrac{6}{5}\)
\(=\dfrac{1}{99.97}-\dfrac{2}{97.93}-\dfrac{6}{15}\)
\(=\dfrac{1}{97}.\left\{\dfrac{1}{99}-\dfrac{2}{93}\right\}-\dfrac{2}{5}\)
\(=\dfrac{-35}{297693}-\dfrac{2}{5}\)
\(=\dfrac{-175-595386}{1488465}\)
\(=\dfrac{-595561}{1488465}\)
a,
Đặt A = \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(\Rightarrow\)2A= \(2.\left(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\right)\)
\(\Rightarrow\)2A= \(2.\left(\dfrac{1}{99}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{95}+...+\dfrac{1}{3}-1\right)\)
2A= \(2.\left(\dfrac{1}{99}-1\right)\)
\(\Rightarrow\) A = \(\dfrac{1}{99}-1=\dfrac{-98}{99}\)
b, \(\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
= \(\dfrac{3.\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}{5.\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}+\dfrac{2.\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8}\right)}{5.\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8}\right)}\)
= \(\dfrac{3}{5}+\dfrac{2}{5}=\dfrac{5}{5}=1\)
Chúc bn hc tốt <3
Lời giải:
a)
\(=\left(\frac{-3}{7}+\frac{4}{11}+\frac{-4}{7}+\frac{7}{11}\right):\frac{7}{11}=\left(\frac{-3-4}{7}+\frac{4+7}{11}\right):\frac{7}{11}=(-1+1):\frac{7}{11}=0\)
b)
Đặt biểu thức là $A$
\(-2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{95.97}-\frac{2}{97.99}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{97-95}{95.97}-\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}-\frac{2}{97.99}\)
\(=1-\frac{1}{97}-\frac{2}{97.99}=\frac{96.99-2}{97.99}\)
\(\Rightarrow A=\frac{1-48.99}{97.99}\)
\(T=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)
\(T=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
Đặt \(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{2}\cdot\dfrac{96}{97}=\dfrac{48}{97}\)
Thay \(A\) vào \(T\) ta có:\(T=\dfrac{1}{99\cdot97}-\dfrac{48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
Đặt \(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(A=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+\dfrac{1}{95.93}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)
\(A=\dfrac{1}{99.97}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}\right)\)
Đặt \(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\)
\(2B=1-\dfrac{1}{97}\)
\(2B=\dfrac{96}{97}\)
\(B=\dfrac{96}{97}:2\)
\(B=\dfrac{48}{97}\)
\(\Rightarrow A=\dfrac{1}{99.97}-\dfrac{48}{97}\)
\(A=\dfrac{1}{99.97}-\dfrac{48.99}{97.99}\)
\(A=\dfrac{1-48.99}{99.97}\)
\(A=-\dfrac{4751}{9603}\)
Vậy \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}=-\dfrac{4751}{9603}\)
Bài 1:
\(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}\right)\)
\(=\dfrac{1}{99.97}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}.\dfrac{96}{97}\)
\(=\dfrac{1}{97.99}-\dfrac{48}{97}\)
Bạn tính nốt nhé
Bài 2, 3 bạn kiểm tra lại đề giúp mk
Bài 1 :
\(\dfrac{1}{99.97}-\dfrac{1}{99.95}-\dfrac{1}{95.93}-......-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{97.99}-\left(\dfrac{1}{97.95}+\dfrac{1}{95.93}+...+\dfrac{1}{5.3}-\dfrac{1}{3.1}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{93}-\dfrac{1}{95}+...+\dfrac{1}{3}-\dfrac{1}{5}+1-\dfrac{1}{3}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{48}{97}\)
\(=\dfrac{51}{97}\)