K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

a) 332017+332018=332016.33+332016.332

=332016.(33+332)=332016.1122⋮374

c)Muốn M nhỏ nhất thì \(12\left(x-2\right)^2+3\)đạt GT dương nhỏ nhất=> 12(x-2)2 đạt GT dương nhỏ nhất=> (x-2)2 đạt GT dương nhỏ nhất => (x-2)2=0

Thay vào M ta được M = 1/3.

7 tháng 11 2017

thế còn phần b thì sao bạn

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

8 tháng 11 2016

 Bài 4:

x O y z m n

Giải:
Vì Om là tia phân giác của góc xOz nên:

mOz = 1/2.xOz

Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy

Ta có: xOz + zOy = 180o ( kề bù )

=> 1/2(xOz + zOy) = 1/2 . 180o

=> 1/2.xOz + 1/2.zOy = 90o

=> mOz + zOn = 90o

=> mOn = 90o   (đpcm)

8 tháng 11 2016

Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55

Vậy 7^6 + 7^5 - 7^4 chia hết cho 55

A = 1 + 5 + 5^2 + ... + 5^50

=> 5A = 5 + 5^2 + 5^3 + ... + 5^51

=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )

=> 4A = 5^51 - 1

=> A = ( 5^51 - 1 )/4

3 tháng 12 2017

1)

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}=\dfrac{100}{\sqrt{100}}=10\left(đpcm\right)\)

2)

\(C=-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

10 tháng 4 2019

1.Ta có (x-y)^2 >=0

        (x-y)(x-y) >=0

        x^2+y^2-2xy>=0

       (x^2+y^2+2xy)-4xy>=0 

      (x+y)^2 >=4xy mà x+y=1 

         4xy <=1

   xy<=1/4

dấu = xảy ra <=> (x-y)^2=0

                     <=>x-y=0 <=> x=y mà x+y=1 

                         <=> x=y=0,5

GTLn của bt là 1/4 tại x=y=0,5

2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)

Bài này bạn chỉ cần thay x=1 vào rồi tính thui

Đáp số là: 8^2019

3.f(-2)=4a-2b+c

 f(3)=9a+3b+c

=> f(-2)+f(3) =13a+b+2c=0

=> f(-2)=-f(3)

=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2

Mà -[f(3)]^2<=0 với mọi a,b,c

=>  f(-2). f(3)<=0 

T i ck cho mình ủng hộ nha

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

16 tháng 10 2017

toán lớp mấy mà cóa)1,7-2√x2x-1 z

18 tháng 10 2017

7 uk

27 tháng 11 2016

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

           \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 11 2016

bạn giải giúp mik bài 2 và bài 3 đc ko

21 tháng 12 2017

\(A=2x^2-2\ge-2\)

Dấu "=" xảy ra khi: \(x=0\)

\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)

\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra khi: \(x=0\)

\(D=3-\left(x+1\right)^2\le3\)

Dấu "=" xảy ra khi: \(x=-1\)

\(E-\left|0,1+x\right|-1,9\le-1,9\)

Dấu "=" xảy ra khi: \(x=-0,1\)

\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)

Dấu "=" xảy ra khi: \(x=0\)