Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
\(S=5+5^2+5^3+.............+5^{2004}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)
\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)
\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)
\(\Leftrightarrow S⋮126\rightarrowđpcm\)
\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)
Vậy \(S⋮26\)
số hạng cuối của B phải là 3^1992 mới đúng
a, nhóm 3 số hạng liền nhau thì ta có
B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)
xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=
=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)
=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)
vậy B chia hết cho 26, hay B chia hết cho 13
Trong 5 số tự nhiên liên tiếp luôn có:
+ 1 số chia hết cho 5
+ 2 số chia hết cho 2
+ 1 số chia hết cho 3
=> Tích của 5 số tự nhiên liên tiếp \(⋮2.2.3.5=60\)